Local description of closed ideals and submodules of analytic functions of one variable.~I
Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 41-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P$ be a topological module (over the ring of polynomials) of vector-valued functions $f\colon G\to\mathbf C^q$, holomorphic in a domain $G\subset\mathbf C$.
A closed submodule $I\subset P$ is local (that is, uniquely determined by the collection $I_\lambda$, $\lambda\in G$, of its localized submodules) if and only if $I$ is stable and saturated. A submodule is said to be stable if it admits division by binomials: $f\in I$, $\frac f{z-\lambda}\in I_\lambda\Rightarrow\frac f{z-\lambda}\in I$.
Being saturated amounts to possessing sufficiently many elements.
Bibliography: 26 titles.
@article{IM2_1980_14_1_a2,
author = {I. F. Krasichkov-Ternovskii},
title = {Local description of closed ideals and submodules of analytic functions of one {variable.~I}},
journal = {Izvestiya. Mathematics },
pages = {41--60},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a2/}
}
TY - JOUR AU - I. F. Krasichkov-Ternovskii TI - Local description of closed ideals and submodules of analytic functions of one variable.~I JO - Izvestiya. Mathematics PY - 1980 SP - 41 EP - 60 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a2/ LA - en ID - IM2_1980_14_1_a2 ER -
I. F. Krasichkov-Ternovskii. Local description of closed ideals and submodules of analytic functions of one variable.~I. Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 41-60. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a2/