Local description of closed ideals and submodules of analytic functions of one variable.~I
Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 41-60

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a topological module (over the ring of polynomials) of vector-valued functions $f\colon G\to\mathbf C^q$, holomorphic in a domain $G\subset\mathbf C$. A closed submodule $I\subset P$ is local (that is, uniquely determined by the collection $I_\lambda$, $\lambda\in G$, of its localized submodules) if and only if $I$ is stable and saturated. A submodule is said to be stable if it admits division by binomials: $f\in I$, $\frac f{z-\lambda}\in I_\lambda\Rightarrow\frac f{z-\lambda}\in I$. Being saturated amounts to possessing sufficiently many elements. Bibliography: 26 titles.
@article{IM2_1980_14_1_a2,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Local description of closed ideals and submodules of analytic functions of one {variable.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {41--60},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a2/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Local description of closed ideals and submodules of analytic functions of one variable.~I
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 41
EP  - 60
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a2/
LA  - en
ID  - IM2_1980_14_1_a2
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Local description of closed ideals and submodules of analytic functions of one variable.~I
%J Izvestiya. Mathematics 
%D 1980
%P 41-60
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a2/
%G en
%F IM2_1980_14_1_a2
I. F. Krasichkov-Ternovskii. Local description of closed ideals and submodules of analytic functions of one variable.~I. Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 41-60. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a2/