Minimal models of rational surfaces over arbitrary fields
Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 17-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article all the types of minimal models of smooth rational surfaces defined over an arbitrary field are described. Bibliography: 19 titles.
@article{IM2_1980_14_1_a1,
     author = {V. A. Iskovskikh},
     title = {Minimal models of rational surfaces over arbitrary fields},
     journal = {Izvestiya. Mathematics },
     pages = {17--39},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a1/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - Minimal models of rational surfaces over arbitrary fields
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 17
EP  - 39
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a1/
LA  - en
ID  - IM2_1980_14_1_a1
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T Minimal models of rational surfaces over arbitrary fields
%J Izvestiya. Mathematics 
%D 1980
%P 17-39
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a1/
%G en
%F IM2_1980_14_1_a1
V. A. Iskovskikh. Minimal models of rational surfaces over arbitrary fields. Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 17-39. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a1/

[1] I. R. Shafarevich (red.), Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl

[2] Artin M., Mumford D., “Some elementary examples of unirational varieties which are not rational”, Proc. London Math. Soc., 25:1 (1972), 75–95 | DOI | MR | Zbl

[3] Artin M., Grothendieck A., Verdier J.-L., Séminaire de géometrie algébrique: cohomologie étale des schémas, Lecture Notes in Mathematics, 269, 270 | Zbl

[4] Auslander M., Goldman O., “The Brauer group of a commutative ring”, Trans. Amer. Math. Soc., 9 (1960), 267–409 | MR

[5] Grothendieck A., “Le groupe de Brauer”, Dix exposés sur la cohomologie des schémas, North Holland, Amsterdam, 1968, 46–188 | MR

[6] Grothendieck A., Dieudonné J., “Eléments de géometrie algébrique”, Publ. Math. IHES, Paris, 1962–1966, no. 17, 24, 28, 32 | MR

[7] Kodaira K., “On the structure of complex analytic surfaces, IV”, Amer. J. Math., 90:4 (1968), 1048–1066 | DOI | MR | Zbl

[8] Bombieri E., Husemoller D., “Classification and embeddings of surfaces”, Algebraic geometry (Humboldt State Univ., Arcata, Calif., 1974), Proc. Sympos. Pure Math., 29, Amer. Math. Soc., Providence, R.I., 1975, 329–420 | MR

[9] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[10] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972 | MR

[11] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami, II”, Matem. sb., 72(114) (1967), 161–192 | MR | Zbl

[12] Ramanujam C. P., “Remarks on the Kodaira vanishing theorem”, J. Indian Math. Soc., 36:1,2 (1972), 41–51 | MR | Zbl

[13] Séminaire de géometrie algébrique du Bois Marie, SGA6, Lectures Notes in Mathematics, 225, 1966–1967

[14] Tate J., “Genus change in inseparable extensions of functions fields”, Proc. Amer. Math. Soc., 3 (1952), 400–406 | DOI | MR | Zbl

[15] Zariski O., “The problem of minimal models in the theory of algebraic surfaces”, Amer. J. Math., 80:1 (1958), 146–184 | DOI | MR | Zbl

[16] Zariski O., “On Castelnuovo's criterion of rationality $p_a=P_2=0$ of an algebraic surfaces”, Illinoise J. Math., 2:3 (1958), 303–315 | MR | Zbl

[17] Zariski O., “The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface, Ser. 2”, Ann. Math., 76:3 (1962), 561–615 | DOI | MR

[18] Shafarevich I. R., Lectures on minimal models, Bombay, 1966 | Zbl

[19] Rudakov A. N., Shafarevich I. R., “Kvaziellipticheskie poverkhnosti tipa K3”, Uspekhi matem. nauk, 33:1 (1978), 227–228 | MR | Zbl