The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic
Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that in any $C^1$-neighborhood of the standard metric $H_0$ on $S^2$, there exists a subset consisting of convex metrics, which is open in the $C^2$-topology, and all of whose closed nonselfintersecting geodesics are hyperbolic. Bibliography: 13 titles.
@article{IM2_1980_14_1_a0,
     author = {A. I. Gryuntal'},
     title = {The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic},
     journal = {Izvestiya. Mathematics },
     pages = {1--16},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a0/}
}
TY  - JOUR
AU  - A. I. Gryuntal'
TI  - The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 1
EP  - 16
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a0/
LA  - en
ID  - IM2_1980_14_1_a0
ER  - 
%0 Journal Article
%A A. I. Gryuntal'
%T The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic
%J Izvestiya. Mathematics 
%D 1980
%P 1-16
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a0/
%G en
%F IM2_1980_14_1_a0
A. I. Gryuntal'. The existence of convex spherical metrics, all closed nonselfintersecting geodesics of which are hyperbolic. Izvestiya. Mathematics , Tome 14 (1980) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/IM2_1980_14_1_a0/