On roots of the multiple integration operator in the space of functions analytic in a~disk
Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 685-693.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A_R$ denote the space of all single-valued functions analytic in the disk $|z|$, $0$, with the topology of compact convergence, and let $J$, $J\cdot=\int_0^z\cdot\,d\xi$, be the integration operator on it. In the paper all continuous linear operators on $A_R$ which satisfy the condition $Y^p=J^p$, where $p$ is a fixed natural number, are found, and it is shown that for each of them there exists a one-to-one bicontinuous mapping $T$ of the space $A_R$ to itself which commutes with $J^p$ and satisfies $YT=TJ$. Bibliography: 8 titles.
@article{IM2_1979_13_3_a7,
     author = {N. I. Nagnibida},
     title = {On roots of the multiple integration operator in the space of functions analytic in a~disk},
     journal = {Izvestiya. Mathematics },
     pages = {685--693},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a7/}
}
TY  - JOUR
AU  - N. I. Nagnibida
TI  - On roots of the multiple integration operator in the space of functions analytic in a~disk
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 685
EP  - 693
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a7/
LA  - en
ID  - IM2_1979_13_3_a7
ER  - 
%0 Journal Article
%A N. I. Nagnibida
%T On roots of the multiple integration operator in the space of functions analytic in a~disk
%J Izvestiya. Mathematics 
%D 1979
%P 685-693
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a7/
%G en
%F IM2_1979_13_3_a7
N. I. Nagnibida. On roots of the multiple integration operator in the space of functions analytic in a~disk. Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 685-693. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a7/

[1] Nagnibida N. I., “O nekotorykh svoistvakh operatorov obobschennogo integrirovaniya v analiticheskom prostranstve”, Sib. matem. zh., 7:6 (1966), 1306–1318 | MR | Zbl

[2] Nagnibida N. I., “Izomorfizmy prostranstva analiticheskikh funktsii v kruge, perestanovochnye so stepenyu operatora integrirovaniya”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, vyp. 6, Khark. gos. un-t, 1968, 184–188 | MR

[3] Khaplanov M. G., “Lineinye preobrazovaniya analiticheskikh prostranstv”, Dokl. AN SSSR, 80:1 (1951), 21–24

[4] Gantmakher F. R., Teoriya matrits, GITTL, M., 1953

[5] Berezovskii N. I., Nagnibida N. I., “Resheniya odnogo operatornogo uravneniya v prostranstve analiticheskikh funktsii”, Matem. sb., Naukova dumka, Kiev, 1976, 104–107 | MR

[6] Kazmin Yu. A., “Polinomy Goncharova i voprosy predstavleniya analiticheskoi funktsii ryadom po pervoobraznym nekotoroi funktsii”, Vest. Mosk. gos. un-ta, Matem., mekh., 1962, no. 6, 9–19 | MR

[7] Sakhnovich L. A., “Spektralnyi analiz operatorov vida $Kf=\int_0^x f(t)k(x-t)dt$”, Izv. AN SSSR. Ser. matem., 22 (1958), 299–308

[8] Nagnibida N. I., “K voprosu o privedenii operatorov Volterra v analiticheskikh prostranstvakh k prosteishemu vidu”, Matem. zametki, 17:4 (1975), 625–630 | MR | Zbl