On roots of the multiple integration operator in the space of functions analytic in a~disk
Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 685-693
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A_R$ denote the space of all single-valued functions analytic in the disk $|z|$,
$0$, with the topology of compact convergence, and let $J$,
$J\cdot=\int_0^z\cdot\,d\xi$, be the integration operator on it. In the paper all continuous linear operators on $A_R$ which satisfy the condition $Y^p=J^p$, where $p$ is a fixed natural number, are found, and it is shown that for each of them there exists a one-to-one bicontinuous mapping $T$ of the space $A_R$ to itself which commutes with $J^p$ and satisfies $YT=TJ$.
Bibliography: 8 titles.
@article{IM2_1979_13_3_a7,
author = {N. I. Nagnibida},
title = {On roots of the multiple integration operator in the space of functions analytic in a~disk},
journal = {Izvestiya. Mathematics },
pages = {685--693},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1979},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a7/}
}
TY - JOUR AU - N. I. Nagnibida TI - On roots of the multiple integration operator in the space of functions analytic in a~disk JO - Izvestiya. Mathematics PY - 1979 SP - 685 EP - 693 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a7/ LA - en ID - IM2_1979_13_3_a7 ER -
N. I. Nagnibida. On roots of the multiple integration operator in the space of functions analytic in a~disk. Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 685-693. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a7/