Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane
Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 589-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\lambda_k\}_1^\infty$ be a sequence in $G^{(+)}=\{z:\operatorname{Im}z>0\}$, and $s_k$ the multiplicity of the occurrences of $\lambda_k$ in the segment $\{\lambda_1,\dots,\lambda_k\}$. Also let $H_+^p$ $(1$ be the space of functions $f(z)$ holomorphic in $G^{(+)}$ that obey $$ \|f\|_p=\sup_{0+\infty}\biggl\{\int^{+\infty}_{-\infty}|f(x+iy)|^p\,dx\biggr\}^{1/p}\infty. $$ The article gives a completely internal characterization of systems of the form $\bigl\{r_k(z)=\frac{(s_k-1)!}{(z-\overline\lambda_k)^{s_k})}\bigr\}^\infty_{k+1}$ that are not total in $H^p_+$ and of the biorthogonal systems $\{\Omega_k(z)\}_1^\infty$ constructed for such nontotal systems. The closed linear hulls of the systems $\{r_k(z)\}_1^\infty$ and $\{\Omega_k(z)\}_1^\infty$ are also characterized. Criteria for these systems to be bases in their closed linear hulls in the metric of $H^p_+$ are obtained. A complete and effective solution of the multiple interpolation problem in the classes $H_+^p$ is given. In addition it is proved that functions with given interpolation data can be represented both as an interpolation series in the system $\{\Omega_k(z)\}_1^\infty$ and as a series in the system $\{r_k(z)\}_1^\infty$. Bibliography: 20 titles.
@article{IM2_1979_13_3_a3,
     author = {M. M. Dzhrbashyan},
     title = {Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane},
     journal = {Izvestiya. Mathematics },
     pages = {589--646},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/}
}
TY  - JOUR
AU  - M. M. Dzhrbashyan
TI  - Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 589
EP  - 646
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/
LA  - en
ID  - IM2_1979_13_3_a3
ER  - 
%0 Journal Article
%A M. M. Dzhrbashyan
%T Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane
%J Izvestiya. Mathematics 
%D 1979
%P 589-646
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/
%G en
%F IM2_1979_13_3_a3
M. M. Dzhrbashyan. Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane. Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 589-646. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/

[1] Schwartz L., Étude des sommes d'exponentielles, Actualités Sci. Ind., No 959, Hermann et Cie., Paris, 1943 | MR | Zbl

[2] Schwartz L., Étude des sommes d'exponentielles, Publications de l'Institut de Mathématique de l'Université de Strasbourg, V. Actualités Sci. Ind., Hermann, Paris, 1959 | MR

[3] Dzhrbashyan M. M., “O nekotorykh ekstremalnykh problemakh v nezhordanovykh oblastyakh”, Dokl. AN ArmSSR, 1:3 (1944), 5–12 | MR

[4] Dzhrbashyan M. M., “Ob odnoi ekstremalnoi zadache iz teorii vzveshennykh ortogonalnykh polinomov”, Izv. AN SSSR. Ser. matem., 12 (1948), 555–568 | Zbl

[5] Dzhrbashyan M. M., “O popolnenii i zamykanii nepolnoi sistemy funktsii $\{e^{-\mu}k^xx^sk^{-1}\} ^\infty_1$”, DAN SSSR, 141:3 (1961), 539–542 | Zbl

[6] Dzhrbashyan M. M., “O popolnenii nepolnoi sistemy Malmkvista na veschestvennoi osi”, Dokl. AN ArmSSR, 35:2 (1962), 55–61 | Zbl

[7] Dzhrbashyan M. M., “Biortogonalnye sistemy ratsionalnykh funktsii i nailuchshee priblizhenie yadra Koshi na veschestvennoi osi”, Matem. sb., 95(137):3(11) (1974), 418–444 | Zbl

[8] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[9] Duren P. L., Theory of $H^p$-spaces, Academic Press, New York, London, 1970 | MR

[10] Titchmarsh E., Vvedenie v teoriyu integralov Fure, OGIZ, M., L., 1948

[11] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR

[12] Shapiro H. S., Shields A. L., “On some interpolation problems for analitic functions”, Amer. J. Math., 83 (1961), 513–532 | DOI | MR | Zbl

[13] Dzhrbashyan M. M., “Biortogonalnye sistemy i reshenie interpolyatsionnoi zadachi s uzlami ogranichennoi kratnosti”, Izv. AN ArmSSR, Matematika, IX:5 (1974), 339–373

[14] Carleson L., “An interpolation problem for bounded analitic Functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[15] Shamoyan F. A., “Teoremy vlozheniya, svyazannye s zadachei kratnogo interpolirovaniya v prostranstvakh $H^p$”, Izv. AN ArmSSR, Matematika, XI:2 (1976), 124–131

[16] Grigoryan Sh. A., “Ob odnom svoistve funktsii iz $H^p(0

+\infty)$ v poluploskosti”, Izv. AN ArmSSR, Matematika, XII:4 (1977), 335–340

[17] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[18] Danford N., Shvarts Zh., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[19] Dzhrbashyan M. M., “Bazisnost nekotorykh biortogonalnykh sistem i reshenie kratnoi interpolyatsionnoi zadachi v klasse $H^p_+$”, DAN SSSR, 234:3 (1977), 517–520 | MR | Zbl

[20] Airapetyan G. M., “Kratnaya interpolyatsiya i baznsnost nekotorykh biortogonalnykh sistem ratsionalnykh funktsii v klassakh $H_p$ Khardi”, Izv. AN ArmSSR, Matematika, XII:4 (1977), 262–277