Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane
Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 589-646

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\lambda_k\}_1^\infty$ be a sequence in $G^{(+)}=\{z:\operatorname{Im}z>0\}$, and $s_k$ the multiplicity of the occurrences of $\lambda_k$ in the segment $\{\lambda_1,\dots,\lambda_k\}$. Also let $H_+^p$ $(1$ be the space of functions $f(z)$ holomorphic in $G^{(+)}$ that obey $$ \|f\|_p=\sup_{0+\infty}\biggl\{\int^{+\infty}_{-\infty}|f(x+iy)|^p\,dx\biggr\}^{1/p}\infty. $$ The article gives a completely internal characterization of systems of the form $\bigl\{r_k(z)=\frac{(s_k-1)!}{(z-\overline\lambda_k)^{s_k})}\bigr\}^\infty_{k+1}$ that are not total in $H^p_+$ and of the biorthogonal systems $\{\Omega_k(z)\}_1^\infty$ constructed for such nontotal systems. The closed linear hulls of the systems $\{r_k(z)\}_1^\infty$ and $\{\Omega_k(z)\}_1^\infty$ are also characterized. Criteria for these systems to be bases in their closed linear hulls in the metric of $H^p_+$ are obtained. A complete and effective solution of the multiple interpolation problem in the classes $H_+^p$ is given. In addition it is proved that functions with given interpolation data can be represented both as an interpolation series in the system $\{\Omega_k(z)\}_1^\infty$ and as a series in the system $\{r_k(z)\}_1^\infty$. Bibliography: 20 titles.
@article{IM2_1979_13_3_a3,
     author = {M. M. Dzhrbashyan},
     title = {Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane},
     journal = {Izvestiya. Mathematics },
     pages = {589--646},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/}
}
TY  - JOUR
AU  - M. M. Dzhrbashyan
TI  - Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 589
EP  - 646
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/
LA  - en
ID  - IM2_1979_13_3_a3
ER  - 
%0 Journal Article
%A M. M. Dzhrbashyan
%T Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane
%J Izvestiya. Mathematics 
%D 1979
%P 589-646
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/
%G en
%F IM2_1979_13_3_a3
M. M. Dzhrbashyan. Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane. Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 589-646. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a3/