Holomorphic tensors and vector bundles on projective varieties
Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 499-555
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study vector bundles on varieties of dimension greater than one. To do this, we apply the theory of equivariant model maps developed in the paper. We prove a topological criterion for the unstability of a vector bundle on a projective surface. Using this estimate and the closedness of holomorphic forms on projective varieties we prove the inequality $c_1^2\leqslant4c_2$ for the Chern classes of a surface of general type.
Bibliography: 37 titles.
@article{IM2_1979_13_3_a1,
author = {F. A. Bogomolov},
title = {Holomorphic tensors and vector bundles on projective varieties},
journal = {Izvestiya. Mathematics },
pages = {499--555},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1979},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/}
}
F. A. Bogomolov. Holomorphic tensors and vector bundles on projective varieties. Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 499-555. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/