Holomorphic tensors and vector bundles on projective varieties
Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 499-555

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study vector bundles on varieties of dimension greater than one. To do this, we apply the theory of equivariant model maps developed in the paper. We prove a topological criterion for the unstability of a vector bundle on a projective surface. Using this estimate and the closedness of holomorphic forms on projective varieties we prove the inequality $c_1^2\leqslant4c_2$ for the Chern classes of a surface of general type. Bibliography: 37 titles.
@article{IM2_1979_13_3_a1,
     author = {F. A. Bogomolov},
     title = {Holomorphic tensors and vector bundles on projective varieties},
     journal = {Izvestiya. Mathematics },
     pages = {499--555},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - Holomorphic tensors and vector bundles on projective varieties
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 499
EP  - 555
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/
LA  - en
ID  - IM2_1979_13_3_a1
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T Holomorphic tensors and vector bundles on projective varieties
%J Izvestiya. Mathematics 
%D 1979
%P 499-555
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/
%G en
%F IM2_1979_13_3_a1
F. A. Bogomolov. Holomorphic tensors and vector bundles on projective varieties. Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 499-555. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/