Holomorphic tensors and vector bundles on projective varieties
Izvestiya. Mathematics, Tome 13 (1979) no. 3, pp. 499-555 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study vector bundles on varieties of dimension greater than one. To do this, we apply the theory of equivariant model maps developed in the paper. We prove a topological criterion for the unstability of a vector bundle on a projective surface. Using this estimate and the closedness of holomorphic forms on projective varieties we prove the inequality $c_1^2\leqslant4c_2$ for the Chern classes of a surface of general type. Bibliography: 37 titles.
@article{IM2_1979_13_3_a1,
     author = {F. A. Bogomolov},
     title = {Holomorphic tensors and vector bundles on projective varieties},
     journal = {Izvestiya. Mathematics},
     pages = {499--555},
     year = {1979},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - Holomorphic tensors and vector bundles on projective varieties
JO  - Izvestiya. Mathematics
PY  - 1979
SP  - 499
EP  - 555
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/
LA  - en
ID  - IM2_1979_13_3_a1
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T Holomorphic tensors and vector bundles on projective varieties
%J Izvestiya. Mathematics
%D 1979
%P 499-555
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/
%G en
%F IM2_1979_13_3_a1
F. A. Bogomolov. Holomorphic tensors and vector bundles on projective varieties. Izvestiya. Mathematics, Tome 13 (1979) no. 3, pp. 499-555. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a1/

[1] Baum P., Bott R., “Singularities of holomorphic foliation”, J. Diff. Geom., 7:3–4 (1972), 279–346 | MR

[2] Berger M., Lasgues A., Varieties kahleriennes compactes, Lecture notes in math., 154, Springer-Verlag, Berlin, 1970 | MR | Zbl

[3] Bombieri E., Husemoller D., Classification and embedding of surfaces, Columbia Univercity, 1975 | MR

[4] Bogomolov F. A., “Klassifikatsiya poverkhnostei tipa $\operatorname{VII}_0$ s $b_2=0$”, Izv. AN SSSR. Ser. matem., 40 (1976), 274–288 | MR

[5] Bogomolov F. A., Golomorfnye tenzory i vektornye rassloeniya na proektivnykh mnogoobraziyakh, preprint, aprel 1976 | MR

[6] Bogomolov F. A., Golomorfnye tenzory i vektornye rassloeniya na proektivnykh mnogoobraziyakh, preprint, fevral 1977 | MR

[7] Bogomolov F. A., “Semeistva krivykh na poverkhnosti obschego tipa”, Dokl. AN SSSR, 236:5 (1977), 1041–1044 | MR | Zbl

[8] Borel A., Linear algebraic groups, Princeton, 1969 | MR

[9] Bott R., “Homogenious vector bundles”, Ann. Math., 66 (1957), 203–248 | DOI | MR | Zbl

[10] Bryukman P., “Tenzornye differentsialnye formy na algebraicheskikh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 35 (1971), 1008–1036 | Zbl

[11] Cartan H., “Quotients of complex analitic spaces”, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, 1–15 | MR

[12] Danilov V. I., Predstavleniya i invarianty (po F. A. Bogomolovu), preprint, aprel 1977 | MR

[13] Fano G., “Nuove research sulla varieta algebriche a'tri dimension a courve serriani canonica”, Comm. Pont. Academy Scienc., 11 (1947), 635–720 | MR | Zbl

[14] Haboush W. I., “Reductive groupes are geometrically reductive”, Ann. Math., 102:1 (1975), 67–84 | DOI | MR

[15] Hilbert D., “Über die vollen Invariantsysteme”, Math. Ann., 42 (1893), 313–373 | DOI | MR

[16] Hirzebruch F., Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1966 | MR

[17] Iitaka S., “On $D$-dimension of algebraic varietes”, J. Math. Soc. Japan, 23:2 (1971), 356–373 | MR | Zbl

[18] Kleiman S., “Ample vector bundles on algebraic surfaces”, Proc. Amer. Math. Soc., 1:3 (1969), 673–676 | DOI | MR

[19] Kleiman S., “A note on the Nakai–Moishezon test for ampleness of a divisor”, Amer. J. Math., 87 (1965), 221–226 | DOI | MR | Zbl

[20] Kodaira K., “On the structure of compact analitic surfaces. I”, Amer. J. Math., 86:4 (1964), 751–798 | DOI | MR | Zbl

[21] Luna D., “Slices etales”, Bull. Soc. Math. France Mem., 1973, no. 33, 81–105 | MR | Zbl

[22] Maruyama M., “Moduli of stable sheaves”, J. Math. Kioto University, 17:1 (1977), 91–127 | MR

[23] Maruyama M., “Stable vector bundles on algebraic surface”, Nagoya Math. J., 58 (1975), 25–69 | MR

[24] Matsushima J., “Espaces homogeneous de Stein des groupes de Lie complexes”, Nagoya Math. J., 16 (1960), 205–218 | MR | Zbl

[25] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, 1965 ; Geometricheskaya teoriya invariantov, Mir, M., 1974 | MR | Zbl | MR | Zbl

[26] Narasimhan M., Seshadri C., “Stable and unitary vector bundles on compact Riemann surface”, Ann. Math., 73 (1965), 540–567 ; Matematika, 13:1 (1969), 27–52 | DOI | MR

[27] Narasimhan M., Seshadri C., “Holomorphic vector bundles on a compact Riemann surfaces”, Math. Ann., 155:1 (1964), 69–80 ; Matematika, 13:1 (1969), 14–26 | DOI | MR | Zbl | MR

[28] Popov V. L., “O stabilnosti deistviya algebraicheskoi gruppy na algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 371–385 | Zbl

[29] Reid M., Bogomolovs theorem, preprint, 1976

[30] Roth L., Algebraic threefolds with special guard to problems of rationality, Springer, Berlin, 1955 | MR

[31] Shwarzenberger R. L. E., “Vector bundles on algebraic surfaces”, Proc. London Math. Soc., 11:44 (1961), 601–623 | DOI | MR

[32] Shwarzenberger R. L. E., “Vector bundles on the proective plane”, Proc. London Math. Soc., 11:44 (1961), 623–640 | DOI | MR

[33] Steinberg R., Lectures on Chevalley Groupes, Yale University, 1967 ; Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | MR | Zbl

[34] Takemoto F., “Stable vector bundles on algebraic surfaces. I”, Nagoya Math. J., 47 (1972), 29–48 | MR | Zbl

[35] Takemoto F., “Stable vector bundles on algebraic surfaces. II”, Nagoya Math. J., 52 (1973), 173–195 | MR | Zbl

[36] Tyurin A. N., “Vektornye rassloeniya na krivykh proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29 (1965), 657–688 | Zbl

[37] Ueno K., Classification theory of algebraic varietes and compact complex spaces, Lecture notes in math., 439, Springer-Verlag, Berlin, 1975 | MR | Zbl