On the maximum principle for nonlinear parabolic and elliptic equations
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 335-347
Voir la notice de l'article provenant de la source Math-Net.Ru
A maximum principle in Sobolev spaces is proved for nonlinear elliptic and parabolic equations. The proof is based on estimates for the maximum of the solutions of a parabolic equation with measurable coefficients, in terms of the $\mathscr L_p$ norm of the right side. The results of the paper are analogous to results of A. D. Aleksandrov on elliptic equations.
Bibliography: 10 titles.
@article{IM2_1979_13_2_a6,
author = {N. V. Krylov},
title = {On the maximum principle for nonlinear parabolic and elliptic equations},
journal = {Izvestiya. Mathematics },
pages = {335--347},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1979},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a6/}
}
N. V. Krylov. On the maximum principle for nonlinear parabolic and elliptic equations. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 335-347. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a6/