An integral estimate for deviations of sets in sections
Izvestiya. Mathematics, Tome 13 (1979) no. 2, pp. 261-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under certain natural assumptions it is proved that for two compact sets close in the Hausdorff metric the average distance between plane sections of them is also small. Bibliography: 4 titles.
@article{IM2_1979_13_2_a3,
     author = {G. Yu. Zaitsev},
     title = {An integral estimate for deviations of sets in sections},
     journal = {Izvestiya. Mathematics},
     pages = {261--276},
     year = {1979},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/}
}
TY  - JOUR
AU  - G. Yu. Zaitsev
TI  - An integral estimate for deviations of sets in sections
JO  - Izvestiya. Mathematics
PY  - 1979
SP  - 261
EP  - 276
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/
LA  - en
ID  - IM2_1979_13_2_a3
ER  - 
%0 Journal Article
%A G. Yu. Zaitsev
%T An integral estimate for deviations of sets in sections
%J Izvestiya. Mathematics
%D 1979
%P 261-276
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/
%G en
%F IM2_1979_13_2_a3
G. Yu. Zaitsev. An integral estimate for deviations of sets in sections. Izvestiya. Mathematics, Tome 13 (1979) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/

[1] Vitushkin A. G., “Dokazatelstvo polunepreryvnosti sverkhu variatsii mnozhestv”, Dokl. AN SSSR, 166:5 (1966), 1022–1026

[2] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[3] Meilanov V. S., “Dva blizkikh mnozhestva s ogranichennymi variatsiyami”, Matem. zametki, 19:4 (1976), 653–656 | MR | Zbl

[4] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR