An integral estimate for deviations of sets in sections
Izvestiya. Mathematics, Tome 13 (1979) no. 2, pp. 261-276
Cet article a éte moissonné depuis la source Math-Net.Ru
Under certain natural assumptions it is proved that for two compact sets close in the Hausdorff metric the average distance between plane sections of them is also small. Bibliography: 4 titles.
@article{IM2_1979_13_2_a3,
author = {G. Yu. Zaitsev},
title = {An integral estimate for deviations of sets in sections},
journal = {Izvestiya. Mathematics},
pages = {261--276},
year = {1979},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/}
}
G. Yu. Zaitsev. An integral estimate for deviations of sets in sections. Izvestiya. Mathematics, Tome 13 (1979) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/
[1] Vitushkin A. G., “Dokazatelstvo polunepreryvnosti sverkhu variatsii mnozhestv”, Dokl. AN SSSR, 166:5 (1966), 1022–1026
[2] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR
[3] Meilanov V. S., “Dva blizkikh mnozhestva s ogranichennymi variatsiyami”, Matem. zametki, 19:4 (1976), 653–656 | MR | Zbl
[4] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR