An integral estimate for deviations of sets in sections
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 261-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain natural assumptions it is proved that for two compact sets close in the Hausdorff metric the average distance between plane sections of them is also small. Bibliography: 4 titles.
@article{IM2_1979_13_2_a3,
     author = {G. Yu. Zaitsev},
     title = {An integral estimate for deviations of sets in sections},
     journal = {Izvestiya. Mathematics },
     pages = {261--276},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/}
}
TY  - JOUR
AU  - G. Yu. Zaitsev
TI  - An integral estimate for deviations of sets in sections
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 261
EP  - 276
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/
LA  - en
ID  - IM2_1979_13_2_a3
ER  - 
%0 Journal Article
%A G. Yu. Zaitsev
%T An integral estimate for deviations of sets in sections
%J Izvestiya. Mathematics 
%D 1979
%P 261-276
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/
%G en
%F IM2_1979_13_2_a3
G. Yu. Zaitsev. An integral estimate for deviations of sets in sections. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a3/

[1] Vitushkin A. G., “Dokazatelstvo polunepreryvnosti sverkhu variatsii mnozhestv”, Dokl. AN SSSR, 166:5 (1966), 1022–1026

[2] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[3] Meilanov V. S., “Dva blizkikh mnozhestva s ogranichennymi variatsiyami”, Matem. zametki, 19:4 (1976), 653–656 | MR | Zbl

[4] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR