Infinite-dimensional compact Hausdorff spaces
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 445-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various types of infinite dimensionality of compact Hausdorff spaces are studied. In particular, it is shown that the classes of compact Hausdorff spaces for which the small and the large transfinite dimensions are defined coincide. An example, giving a negative solution of Aleksandrov's problem on the coincidence of countable dimensionality and weak infinite dimensionality in the class of compact Hausdorff spaces, is constructed. Bibliography: 19 titles.
@article{IM2_1979_13_2_a12,
     author = {V. V. Fedorchuk},
     title = {Infinite-dimensional compact {Hausdorff} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {445--460},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a12/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Infinite-dimensional compact Hausdorff spaces
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 445
EP  - 460
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a12/
LA  - en
ID  - IM2_1979_13_2_a12
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Infinite-dimensional compact Hausdorff spaces
%J Izvestiya. Mathematics 
%D 1979
%P 445-460
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a12/
%G en
%F IM2_1979_13_2_a12
V. V. Fedorchuk. Infinite-dimensional compact Hausdorff spaces. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 445-460. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a12/

[1] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[2] Jensen R. B., “The fine structure of the constructible hierarchy”, Ann. Math. Logic, 4 (1972), 229–308 | DOI | MR | Zbl

[3] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, Uspekhi matem. nauk, 23:5 (1968), 3–49 | MR

[4] Levshenko B. T., “O silno beskonechnomernykh prostranstvakh”, Vestn. MGU, ser. matem., 5 (1959), 219–228

[5] Levshenko B. T., “Prostranstva transfinitnoi razmernosti”, Matem. sb., 67:2 (1965), 255–266

[6] Przymusiński T. C., On the dimension of product spaces and an example of M. Wage, preprint | MR

[7] Savinov N. V., “Primer sovershenno normalnogo bikompakta bez promezhutochnykh razmernostei”, Vestn. MGU, Ser. matem., 3 (1976), 52–56 | MR | Zbl

[8] Sklyarenko E. G., “O nekotorykh prilozheniyakh teorii puchkov v obschei topologii”, Uspekhi matem. nauk, 6 (1964), 47–70 | Zbl

[9] Smirnov Yu. M., “Ob universalnykh prostranstvakh dlya nekotorykh klassov prostranstv”, Izv. AN SSSR. Ser. matem., 23 (1959), 185–196 | MR | Zbl

[10] Fedorchuk V. V., “Ob otobrazheniyakh, ne ponizhayuschikh razmernost”, Dokl. AN SSSR, 185:1 (1969), 54–57 | Zbl

[11] Fedorchuk V. V., “Bikompakty bez promezhutochnykh razmernostei”, Dokl. AN SSSR, 213:4 (1973), 795–797 | Zbl

[12] Fedorchuk V. V., “Bikompakt, vse beskonechnye zamknutye podmnozhestva kotorogo $n$-merny”, Matem. sb., 96:1 (1975), 41–62 | Zbl

[13] Fedorchuk V. V., “O moschnosti nasledstvenno separabelnykh bikompaktov”, Dokl. AN SSSR, 222:2 (1975), 302–305 | MR | Zbl

[14] Fedorchuk V. V., “A perfectly normal compact space without intermediate dimensions”, Bull. Pol. Acad. Sci. Sér. sci. math., 23 (1975), 975–979 | MR | Zbl

[15] Fedorchuk V. V., “Vpolne zamknutye otobrazheniya i sovmestimost nekotorykh teorem obschei topologii s aksiomami teorii mnozhestv”, Matem. sb., 99:1 (1976), 3–33 | MR | Zbl

[16] Fedorchuk V. V., “O razmernosti $\varkappa$-metrizuemykh bikompaktov, v chastnosti prostranstv Dugundzhi”, Dokl. AN SSSR, 234:1 (1977), 30–33 | MR | Zbl

[17] Fedorchuk V. V., “On the dimension of hereditarily spaces”, Proc. London Math. Soc., Third ser., 36:1 (1978), 163–175 | DOI | MR | Zbl

[18] Fedorchuk V. V., “Fully closed maps, scannable spectra and a cardinality of hereditarily separable spaces”, General Topology and its Applications, 8 (1978)

[19] Schepin E. V., “Topologiya predelnykh prostranstv neschetnykh obratnykh spektrov”, Uspekhi matem. nauk, 31:5 (1976), 191–226 | MR | Zbl