Finite groups in which centralizers of four-subgroups are 2-groups
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 417-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is Theorem 1, which describes finite simple groups in which the centralizer of every four-subgroup is a 2-group. Theorem 2 gives a description of simple groups containing saturated 2-subgroups of rank $\leqslant2$. Bibliography: 27 titles.
@article{IM2_1979_13_2_a10,
     author = {S. A. Syskin},
     title = {Finite groups in which centralizers of four-subgroups are 2-groups},
     journal = {Izvestiya. Mathematics },
     pages = {417--434},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a10/}
}
TY  - JOUR
AU  - S. A. Syskin
TI  - Finite groups in which centralizers of four-subgroups are 2-groups
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 417
EP  - 434
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a10/
LA  - en
ID  - IM2_1979_13_2_a10
ER  - 
%0 Journal Article
%A S. A. Syskin
%T Finite groups in which centralizers of four-subgroups are 2-groups
%J Izvestiya. Mathematics 
%D 1979
%P 417-434
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a10/
%G en
%F IM2_1979_13_2_a10
S. A. Syskin. Finite groups in which centralizers of four-subgroups are 2-groups. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 417-434. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a10/

[1] Kondratev A. S., “Konechnye prostye gruppy, silovekaya 2-podgruppa kotorykh est rasshirenie abelevoi gruppy posredstvom gruppy ranga 1”, Algebra i logika, 14:3 (1975), 288–303 | MR

[2] Mazurov V. D., “O tsentralizatorakh involyutsii v prostykh gruppakh”, Matem. sb., 93(135):4 (1974), 529–539 | MR | Zbl

[3] Mazurov V. D., Syskin S. A., “Konechnye gruppy s 2-silovskimi peresecheniyami ranga $\leqslant 2$”, Matem. zametki, 16:1 (1974), 129–134 | MR | Zbl

[4] Syskin S. A., “Prostye konechnye gruppy 2-ranga 3 s razreshimymi tsentralizatorami involyutsii”, Algebra i logika, 10:6 (1971), 668–709 | MR | Zbl

[5] Syskin S. A., “O tsentralizatorakh 2-podgrupp v konechnykh gruppakh”, Algebra i Logika, 17:3 (1978), 316–354 | MR | Zbl

[6] Fomin A. N., “O $CV_4T$-gruppakh”, Tezisy dokladov V Vsesoyuznogo simpoziuma po teorii grupp, Novosibirsk, 1976

[7] Alperin J. L., Gorenstein D., “The multiplicators of certain simple groups”, Proc. Amer. Math. Soc., 17 (1966), 515–519 | DOI | MR | Zbl

[8] Aschbacher M., “The infinite simple groups”, Bull. Amer. Math. Soc., 82:3 (1976), 484 | DOI | MR | Zbl

[9] Aschbacher M., “A characterization of Chevalley groups over fields of odd order. I, II”, Ann. Math., 106:2 (1977), 353–398 | DOI | MR | Zbl

[10] Bauman B., “Endliche Gruppen mit einer 2-zentralen Involution deren Zentralizator 2-abgeschlossen ist”, Ill. J. Math., 23:1 (1978), 97–131 | MR

[11] Dempwolff U., “A characterization of the Rudvalis simple group of order $2^14\cdot3^3 \cdot5^3\cdot7\cdot13\cdot29$ by the centralizer of noncentral involution”, J. Algebra, 32:1 (1974), 53–88 | DOI | MR | Zbl

[12] Feit W., Thompson J. G., “Finite groups which contain a sell-centralizing subgroups of order 3”, Nagoya Math. J., 21 (1962), 185–197 | MR | Zbl

[13] Glauberman G., “Central elements in core-free groups”, J. Algebra, 4:3 (1966), 403–420 | DOI | MR | Zbl

[14] Goldschmidt D., “A conjugation family for finite groups”, J. Algebra, 16:1 (1970), 138–142 | DOI | MR | Zbl

[15] Goldschmidt D., “2-Fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR | Zbl

[16] Gorenstein D., Finite Groups, Harper and Row, New York, 1968 | MR | Zbl

[17] Gorenstein D., Harada K., “Finite groups whose 2-subgroups are generated by at most 4 elements”, Memoirs Amer. Math. Soc., 1974, no. 147, 1–464 | MR

[18] Gorenstein D., Walter J. H., “The chatacterization of finite groups with dihedral Sylow 2-subgroups. I, II, III”, J. Algebra, 2 (1965), 85–151 ; 218–270 ; 354–393 | DOI | MR | Zbl | MR | MR | Zbl

[19] Griess R., “Schur multipliers of the known finite simple groups”, Bull. Amer. Math. Soc., 78:1 (1972), 68–71 | DOI | MR | Zbl

[20] Higman G., Odd Characterizations of Finite Simple Groups, Michigan Univ., 1968

[21] Huppert B., Endliche Gruppen. I, Springer-Verlag, Berlin, 1967 | MR | Zbl

[22] Leon J. S., Wales B. D., “Simple groups of order $2^a3^bp^c$ with cyclic Sylow $p$-groups”, J. Algebra, 29:2 (1974), 246–254 | DOI | MR | Zbl

[23] Lundgren J. R., “On finite simple groups in which the centralizer $M$ of an involution is solvable and $O_2(M)$ is extraspecial”, J. Algebra, 41:1 (1976), 1–15 | DOI | MR | Zbl

[24] Smith F., “On finite groups with large extra-special 2-subgroups”, J. Algebra, 44:2 (1977), 477–487 | DOI | MR | Zbl

[25] Suzuki M., “Finite groups with nilpotent centralizers”, Trans. Amer. Math. Soc., 99:3 (1961), 425–470 | DOI | MR | Zbl

[26] Suzuki M., “On a class of double transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[27] Thompson J. G., “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–437 | DOI | MR | Zbl