On the coefficients of everywhere convergent series in some rearranged orthonormal systems
Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 107-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author establishes the existence of a series $\sum a_{\nu_k}\cos\nu_kx+b_{\nu_k}\sin\nu_kx$ in some rearranged trigonometric system, which converges everywhere to a Lebesgue integrable function and whose coefficients $a_{\nu_k}$ and $b_{\nu_k}$, $k=1,2,\dots$, are not the Fourier–Lebesgue coefficients of this function. Similar results are established for the Haar system and some other systems. Bibliography: 17 titles.
@article{IM2_1979_13_1_a6,
     author = {G. M. Mushegyan},
     title = {On the coefficients of everywhere convergent series in some rearranged orthonormal systems},
     journal = {Izvestiya. Mathematics },
     pages = {107--132},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/}
}
TY  - JOUR
AU  - G. M. Mushegyan
TI  - On the coefficients of everywhere convergent series in some rearranged orthonormal systems
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 107
EP  - 132
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/
LA  - en
ID  - IM2_1979_13_1_a6
ER  - 
%0 Journal Article
%A G. M. Mushegyan
%T On the coefficients of everywhere convergent series in some rearranged orthonormal systems
%J Izvestiya. Mathematics 
%D 1979
%P 107-132
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/
%G en
%F IM2_1979_13_1_a6
G. M. Mushegyan. On the coefficients of everywhere convergent series in some rearranged orthonormal systems. Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 107-132. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/

[1] Arutyunyan F. G., “O edinstvennosti ryadov po sisteme Khaara”, Dokl. AN ArmSSR, 38 (1964), 129–134 | Zbl

[2] Arutyunyan F. G., “Predstavlenie izmerimykh funktsii pochti vsyudu skhodyaschimisya ryadami”, Matem. sb., 90(132):4 (1973), 483–520

[3] Arutyunyan F. G., Talalyan A. A., “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28 (1964), 1391–1408 | Zbl

[4] Stechkin S. B., Ulyanov P. L., “O mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 26 (1962), 211–222 | Zbl

[5] Skvortsov V. A., “Teorema tipa Kantora dlya sistemy Khaara”, Vestn. Mosk. un-ta, matem.-mekh., 1964, no. 5, 3–6 | Zbl

[6] Petrovskaya M. B., “Nekotorye teoremy edinstvennosti dlya ryadov po sisteme Khaara”, Vestnik Mosk. un-ta, ser. 1, 1964, no. 5, 15–18

[7] Petrovskaya M. B., “O nul-ryadakh ko sisteme Khaara i o mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 28 (1964), 773–798

[8] Talalyan A. A., Arutyunyan F. G., “O skhodimosti ryadov po sisteme Khaara”, Matem. sb., 66(108):2 (1965), 240–247

[9] Mushegyan M. G., “O edinstvennosti ryadov po perestavlennym sistemam Khaara”, Izv. AN ArmSSR, seriya matem., VI:1 (1971), 21–34

[10] Haar A., Gesammelte Arbeiten, Budapest, 1959 | MR

[11] Cantor G., “Ueber die Ausdehnung eines Satzes aus Theorie der trigonometrishen Reihen”, Math. Ann., 5 (1872), 123–132 | DOI | MR

[12] Du Bois-Reymond P., “Beweis das die Koeffizienten der trigonometrishen Reihen”, Abh. Akad. Wiss., 1876, 117–166, Munchen | Zbl

[13] Faber G., “Über die Orthogonalfunktionen des Herrn Haar”, Jahrebericht Deutschen Math. Vereinigung, 19 (1910), 104–112 | Zbl

[14] Shneider A. A., “O edinstvennosti ryadov po sisteme funktsii Uolsha”, Matem. sb., 24(66) (1949), 279–300 | Zbl

[15] Vallee-Poussen Ch. J., “Sur I'unicite de developpement trigonometrique”, Bull. Acad. Roy de Belg, 1912, 702–718

[16] Young W. H., “A note on trigonometrical series”, Mess. of Math., 38 (1909), 44–48

[17] Gundy R. F., “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR | Zbl