On the coefficients of everywhere convergent series in some rearranged orthonormal systems
Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 107-132

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author establishes the existence of a series $\sum a_{\nu_k}\cos\nu_kx+b_{\nu_k}\sin\nu_kx$ in some rearranged trigonometric system, which converges everywhere to a Lebesgue integrable function and whose coefficients $a_{\nu_k}$ and $b_{\nu_k}$, $k=1,2,\dots$, are not the Fourier–Lebesgue coefficients of this function. Similar results are established for the Haar system and some other systems. Bibliography: 17 titles.
@article{IM2_1979_13_1_a6,
     author = {G. M. Mushegyan},
     title = {On the coefficients of everywhere convergent series in some rearranged orthonormal systems},
     journal = {Izvestiya. Mathematics },
     pages = {107--132},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/}
}
TY  - JOUR
AU  - G. M. Mushegyan
TI  - On the coefficients of everywhere convergent series in some rearranged orthonormal systems
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 107
EP  - 132
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/
LA  - en
ID  - IM2_1979_13_1_a6
ER  - 
%0 Journal Article
%A G. M. Mushegyan
%T On the coefficients of everywhere convergent series in some rearranged orthonormal systems
%J Izvestiya. Mathematics 
%D 1979
%P 107-132
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/
%G en
%F IM2_1979_13_1_a6
G. M. Mushegyan. On the coefficients of everywhere convergent series in some rearranged orthonormal systems. Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 107-132. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/