On the coefficients of everywhere convergent series in some rearranged orthonormal systems
Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 107-132
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the author establishes the existence of a series
$\sum a_{\nu_k}\cos\nu_kx+b_{\nu_k}\sin\nu_kx$ in some rearranged trigonometric system, which converges everywhere to a Lebesgue integrable function and whose coefficients $a_{\nu_k}$ and $b_{\nu_k}$, $k=1,2,\dots$, are not the Fourier–Lebesgue coefficients of this function. Similar results are established for the Haar system and some other systems.
Bibliography: 17 titles.
@article{IM2_1979_13_1_a6,
author = {G. M. Mushegyan},
title = {On the coefficients of everywhere convergent series in some rearranged orthonormal systems},
journal = {Izvestiya. Mathematics },
pages = {107--132},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1979},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/}
}
TY - JOUR AU - G. M. Mushegyan TI - On the coefficients of everywhere convergent series in some rearranged orthonormal systems JO - Izvestiya. Mathematics PY - 1979 SP - 107 EP - 132 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/ LA - en ID - IM2_1979_13_1_a6 ER -
G. M. Mushegyan. On the coefficients of everywhere convergent series in some rearranged orthonormal systems. Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 107-132. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a6/