Various widths of the class $H_p^r$ in the space~$L_q$
Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 73-87

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of reducing the computation of $n$-widths of compact sets of functions to the analogous problem for finite-dimensional compact sets is presented. Using this method the author obtains best possible (in the “power scale”) estimates for Kolmogorov, Aleksandrov and entropy $n$-widths of the class $H_p^r$ of functions $f(x)$, $x\in R^S$, that are $2\pi$-periodic in each variable, satisfy the inequality $$ \biggl\|\frac{\partial^{rs}}{\partial x_1^r\cdots\partial x_s^r}\biggr\|_{L_p}\leqslant1 $$ and have the property that any Fourier coefficients with at least one zero index must be equal to zero. Bibliography: 21 titles.
@article{IM2_1979_13_1_a4,
     author = {V. E. Maiorov},
     title = {Various widths of the class $H_p^r$ in the space~$L_q$},
     journal = {Izvestiya. Mathematics },
     pages = {73--87},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a4/}
}
TY  - JOUR
AU  - V. E. Maiorov
TI  - Various widths of the class $H_p^r$ in the space~$L_q$
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 73
EP  - 87
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a4/
LA  - en
ID  - IM2_1979_13_1_a4
ER  - 
%0 Journal Article
%A V. E. Maiorov
%T Various widths of the class $H_p^r$ in the space~$L_q$
%J Izvestiya. Mathematics 
%D 1979
%P 73-87
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a4/
%G en
%F IM2_1979_13_1_a4
V. E. Maiorov. Various widths of the class $H_p^r$ in the space~$L_q$. Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 73-87. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a4/