On conditions for representability of entire functions by certain general series
Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 63-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(z)$ be an entire function of order $\rho$ and $L(\lambda)$ an entire function of order
$\rho_1>\rho$ with simple zeros $\lambda_1,\dots,\lambda_k,\dots$ . A series
$\sum_1^\infty\alpha_kf(\lambda_kz)$ is assigned (according to a specific rule) to an arbitrary entire function $F(z)$ of order $\nu\frac{\rho\rho_1}{\rho_1-\rho}$. Necessary and sufficient conditions on $L(\lambda)$ are found under which this series always converges to $F(z)$ in some topology.
Bibliography: 5 titles.
@article{IM2_1979_13_1_a3,
author = {A. F. Leont'ev and Yu. N. Frolov},
title = {On conditions for representability of entire functions by certain general series},
journal = {Izvestiya. Mathematics },
pages = {63--72},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1979},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a3/}
}
TY - JOUR AU - A. F. Leont'ev AU - Yu. N. Frolov TI - On conditions for representability of entire functions by certain general series JO - Izvestiya. Mathematics PY - 1979 SP - 63 EP - 72 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a3/ LA - en ID - IM2_1979_13_1_a3 ER -
A. F. Leont'ev; Yu. N. Frolov. On conditions for representability of entire functions by certain general series. Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a3/