On conditions for representability of entire functions by certain general series
Izvestiya. Mathematics, Tome 13 (1979) no. 1, pp. 63-72
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f(z)$ be an entire function of order $\rho$ and $L(\lambda)$ an entire function of order $\rho_1>\rho$ with simple zeros $\lambda_1,\dots,\lambda_k,\dots$ . A series $\sum_1^\infty\alpha_kf(\lambda_kz)$ is assigned (according to a specific rule) to an arbitrary entire function $F(z)$ of order $\nu\frac{\rho\rho_1}{\rho_1-\rho}$. Necessary and sufficient conditions on $L(\lambda)$ are found under which this series always converges to $F(z)$ in some topology. Bibliography: 5 titles.
@article{IM2_1979_13_1_a3,
author = {A. F. Leont'ev and Yu. N. Frolov},
title = {On conditions for representability of entire functions by certain general series},
journal = {Izvestiya. Mathematics},
pages = {63--72},
year = {1979},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a3/}
}
A. F. Leont'ev; Yu. N. Frolov. On conditions for representability of entire functions by certain general series. Izvestiya. Mathematics, Tome 13 (1979) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a3/
[1] Leontev A. F., “O predstavlenii tselykh funktsii nekotorymi obschimi ryadami”, Matem. sb., 71(113):1 (1966), 3–13 | MR
[2] Shevtsov V. I., “O predstavlenii tselykh funktsii ryadami $\displaystyle\sum_{k=1}^\infty \alpha_kf(\lambda_kz)$”, Matem. zametki, 4:5 (1968), 579–588 | Zbl
[3] Leontev A. F., “Ob usloviyakh razlozhimosti analiticheskikh funktsii v ryady Dirikhle”, Izv. AN SSSR. Ser. matem., 36 (1972), 1282–1295 | MR
[4] Leontev A. F., “Ob odnom funktsionalnom uravnenii”, Izv. AN SSSR. Ser. matem., 29 (1965), 725–756 | MR
[5] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966