On tori with a~biquadratic splitting field
Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 536-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete birational classification of algebraic tori with a biquadratic splitting field is obtained in this paper. It is shown that any torus of the indicated type is birationally equivalent to a direct product of $n$ copies $(n\geqslant0)$ of a special three-dimensional torus $\mathscr I$ and an affine space $\mathbf A^m$. An affirmative answer to one of Zarisskii's conjectures is also obtained for tori of this type. Up till now a birational classification of tori has been known only in the case of a metacyclic splitting field (i.e. in the case where all Sylow subgroups of the Galois group of the splitting field are cyclic). Bibliography: 12 titles.
@article{IM2_1978_12_3_a5,
     author = {B. \`E. Kunyavskii},
     title = {On tori with a~biquadratic splitting field},
     journal = {Izvestiya. Mathematics },
     pages = {536--542},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a5/}
}
TY  - JOUR
AU  - B. È. Kunyavskii
TI  - On tori with a~biquadratic splitting field
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 536
EP  - 542
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a5/
LA  - en
ID  - IM2_1978_12_3_a5
ER  - 
%0 Journal Article
%A B. È. Kunyavskii
%T On tori with a~biquadratic splitting field
%J Izvestiya. Mathematics 
%D 1978
%P 536-542
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a5/
%G en
%F IM2_1978_12_3_a5
B. È. Kunyavskii. On tori with a~biquadratic splitting field. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 536-542. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a5/

[1] Voskresenskii V. E., “O modulyakh Pikara proektivnykh modelei algebraicheskikh torov. II”, Issledovaniya po teorii chisel, vyp. 6, Saratovskii gos. un-t, 1975, 18–33 | Zbl

[2] Voskresenskii V. E., “Stabilnaya ekvivalentnost algebraicheskikh torov”, Izv. AN SSSR. Ser. matem., 38 (1974), 3–10 | MR | Zbl

[3] Voskresenskii V. E., “Biratsionalnye svoistva lineinykh algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 34 (1970), 3–19 | MR | Zbl

[4] Voskresenskii V. E., “O modulyakh Pikara proektivnykh modelei algebraicheskikh torov”, Issledovaniya po teorii chisel, vyp. 5, Saratovskii gos. un-t, 1975, 14–21

[5] Nazarova L. A., “Tselochislennye predstavleniya chetvernoi gruppy”, Dokl. AN SSSR, 140:5 (1961), 1011–1014 | MR | Zbl

[6] Drozd Yu. A., “O predstavleniyakh kubicheskikh $\mathbf Z$-kolets”, Dokl. AN SSSR, 174:1 (1967), 16–18 | MR | Zbl

[7] Reiner I., “Failure of the Krull–Schmidt theorem for integral representations”, Michigan Math. J., 9:3 (1962), 225–231 | DOI | MR | Zbl

[8] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[9] Heller A., “On group representations over a valuation ring”, Proc. Nat. Acad. Sci. USA, 47:8 (1961), 1194–1197 | DOI | MR | Zbl

[10] Borevich Z. I., Faddeev D. K., “Teoriya gomologii v gruppakh. II”, Vestnik Leningradskogo gos. un-ta, 1959, no. 7, 72–87 | Zbl

[11] Bass H., “On the ubiquity of Gorenstein rings”, Math. Zeitschrift, 82:1 (1963), 8–28 | DOI | MR | Zbl

[12] Voskresenskii V. E., “O dvumernykh algebraicheskikh torakh. II”, Izv. AN SSSR. Ser. matem., 31 (1967), 711–716 | MR | Zbl