Functions pluriharmonic on a~maniford
Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 439-447
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u$ be a smooth function on a manifold $M$. In this paper necessary and sufficient conditions are obtained for $u$ to be the real part of a $CR$-function on $M$. These conditions comprise a system of linear differential equations in this function, whose order depends on the location of $M$ with respect to the complex structure.
Bibliography: 8 titles.
@article{IM2_1978_12_3_a0,
author = {V. K. Beloshapka},
title = {Functions pluriharmonic on a~maniford},
journal = {Izvestiya. Mathematics },
pages = {439--447},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a0/}
}
V. K. Beloshapka. Functions pluriharmonic on a~maniford. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 439-447. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a0/