Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1978_12_2_a3, author = {V. D. Golovin}, title = {Hausdorff separation theorems}, journal = {Izvestiya. Mathematics }, pages = {247--253}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {1978}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a3/} }
V. D. Golovin. Hausdorff separation theorems. Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 247-253. http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a3/
[1] Golovin V. D., “Teoremy dvoistvennosti dlya kogomologii kompleksnykh mnogoobrazii”, Funktsionalnyi analiz i ego prilozh., 4:1 (1970), 33–41 | MR | Zbl
[2] Serre J.-P., “Un théorème de dualité”, Comm. math. helv., 29:1 (1955), 9–26 | DOI | MR | Zbl
[3] Golovin V. D., “Dvoistvennosti de Rama–Serra dlya kogerentnykh analiticheskikh puchkov na kompleksnykh prostranstvakh”, Teoriya funktsii, funkts. analiz i ikh prilozh., 25 (1976), 49–56 | MR | Zbl
[4] Golovin V. D., “Gomologii analiticheskikh puchkov”, Dokl. AN SSSR, 225:1 (1975), 41–43 | MR | Zbl
[5] Ramis J.-P., Ruget G., Verdier J.-L., “Dualite relative en geometrie analytique complexe”, Invent. math., 13 (1971), 261–283 | DOI | MR | Zbl
[6] Sebastyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77
[7] Raikov D. A., “Dvustoronnyaya teorema o zamknutom grafike dlya topologicheskikh lineinykh prostranstv”, Sib. matem. zh., 7:2 (1966), 353–372 | MR | Zbl
[8] Schwartz L., “Homomorphismes et applications complement continue”, C. R. Acad. Sci. Paris, 236 (1953), 2472–2473 | MR | Zbl
[9] Cartan H., Serre J.-P., “Un théorème de finitude concernant les variétés analytiques compactes”, C. R. Acad. Sci. Paris, 237 (1953), 128–130 | MR | Zbl
[10] Golovin V. D., “Prostranstva kogomologii s kompaktnymi nositelyami kompleksnykh analiticheskikh mnogoobrazii”, Ukrainskii geometricheskii sbornik, 13 (1973), 27–63 | Zbl
[11] Andreotti A., Banica C., “Relative duality on complex spaces”, Rev. roumaine math. pures et appl., 20:9 (1975), 981–1041 | MR | Zbl