On pairings in elliptic curves over global fields
Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 225-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author constructs and investigates the nondegeneracy of pairings in the Galois cohomology of objects naturally attached to an elliptic curve defined over a global field. He constructs a series of curves over a global function field that have finite $\text{ш}$ and among whose minimal models are surfaces of arbitrarily large arithmetic genus. Bibliography: 49 titles.
@article{IM2_1978_12_2_a2,
     author = {O. N. Vvedenskii},
     title = {On pairings in elliptic curves over global fields},
     journal = {Izvestiya. Mathematics },
     pages = {225--246},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a2/}
}
TY  - JOUR
AU  - O. N. Vvedenskii
TI  - On pairings in elliptic curves over global fields
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 225
EP  - 246
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a2/
LA  - en
ID  - IM2_1978_12_2_a2
ER  - 
%0 Journal Article
%A O. N. Vvedenskii
%T On pairings in elliptic curves over global fields
%J Izvestiya. Mathematics 
%D 1978
%P 225-246
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a2/
%G en
%F IM2_1978_12_2_a2
O. N. Vvedenskii. On pairings in elliptic curves over global fields. Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 225-246. http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a2/

[1] Artin M., “Supersingular $K3$ surfaces”, Ann. Scient. Ecole Norm. Sup., 7:4 (1974), 543–567 | MR | Zbl

[2] Artin M., Grothendieck A., Verdier J. L., “Theorie des topos et cohomologie etale des schemas”, Lecture Notes in Math., no. 269, 270, 305, Springer-Verlag, Berlin, New York, 1973 | MR

[3] Artin M., Swinnerton-Dyer H. P. F., “The Shafarevich–Tate conjecture for pencils of elliptic curves on $K3$ surfaces”, Invent. Math., 20:6 (1973), 249–266 | DOI | MR | Zbl

[4] Begueri L., “Dualite pour les varietes aleliennes sur un corps local a corps residuel algebriquement clos”, C.R. Acad. Sci. Paris Sér.A–B, 283:3 (1976), 111–114 | MR | Zbl

[5] Berthelot P., Cohomologie cristalline des schemas de caracteristique $p>0$, Lecture Notes in Math., 407, Springer-Verlag, Berlin, New York, 1974 | MR | Zbl

[6] Borel A., Serr Zh.-P., “Teorema Rimana–Poxa”, Matematika, 5:5 (1961), 17–54

[7] Cassels J. W. S., “Arithmetic on curves of genus one. IV”, J. Reine Angew. Math., 211:1/2 (1962), 95–112 | MR | Zbl

[8] Cassels J. W. S., “Arithmetic on curves of genus one. VII”, J. Reine Angew. Math., 216:3/4 (1964), 150–158 | MR | Zbl

[9] Cassels J. W. S., “Diophantine equations with special reference to elliptic curves”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR

[10] Dolgachev I. V., “Eilerova kharakteristika semeistva algebraicheskikh mnogoobrazii”, Matem. sb., 89:2 (1972), 297–312 | Zbl

[11] Grothendieck A., “Le group de Brauer. I, II”, Dix exposes sur cohomologie des schemas (Sem. Bourbaki), Amsterdam, Paris, 1968

[12] Grothendieck A., “Le group de Brauer. III”, Dix exposes sur cohomologie des schemas, Amsterdam, Paris, 1968

[13] Igusa J.-I., “Betti and Picard numbers of abstract algbraic surfaces”, Proc. Nat. Acad. Sci., 46 (1960), 724–726 | DOI | MR | Zbl

[14] Kassels Dzh. V. S., Frëlikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[15] Leng S., Algebra, Mir, M., 1968

[16] Maklein S., Gomologiya, Mir, M., 1966

[17] Manin J. I., “Le groupe de Brauer–Grothendieck en géométrie diophantienne”, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, 401–411 | MR

[18] Mazur B., “Ratsionalnye tochki abelevykh mnogoobrazii nad bashnyami chislovykh polei”, Matematika, 17:2 (1973), 3–58 | MR

[19] Mazur B., “Notes on etale cohomology of number fields”, Ann. Sc. Ecole Norm. Sup., 6:4 (1973), 521–556 | MR

[20] Milne J., “The Brauer group of a rational surface”, Invent. Math., 11:4 (1970), 304–307 | DOI | MR | Zbl

[21] Milne J., “On a conjecture of Artin and Tate”, Ann. Math., 102:3 (1975), 517–533 | DOI | MR | Zbl

[22] Neron A., “Modeles minimaux des varietes abelinnes sur les corps locaux et globaux”, Pub. Math. IHES, 21 (1964), 128 | MR | Zbl

[23] Ogg A. P., “Cohomology of abelian varietes over function fields”, Ann. Math., 76:2 (1962), 185–212 | DOI | MR | Zbl

[24] Raynand M., “Caracteristique d'Euler–Poincare d'un faiscean et cohomologie des varietes abeliennes”, Dix exposes sur cohomologie des schemes, North–Holland, Amsterdam, Paris, 1968, 12–31

[25] Shafarevich I. R., “Gruppa glavnykh odnorodnykh algebraicheskikh mnogoobrazii”, Dokl. AN SSSR, 124:1 (1959), 42–43 | Zbl

[26] Shafarevich I. R., “Glavnye odnorodnye prostranstva, opredelennye nad polem funktsii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 64, 1961, 316–346

[27] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl

[28] Serre J.-P., “Groupes proalgebriques”, Pub. Math. IHES, 1961, no. 7 | MR

[29] Serre J.-P., “Sur les corps locaux a corps residuell algebriquement clos”, Bull. Soc. Math. France, 89 (1961), 105–154 | MR | Zbl

[30] Serre J.-P., Geometrie Algebrique, Proc. Intern. Congress Math., Stockholm, 1962 | MR

[31] Serre J.-P., “Proprietes galoisiennes des points d'ordre fini des courbes elliptiques”, Inv. math., 15:4 (1972), 259–331 | DOI | MR | Zbl

[32] Shatz S. S., “Principal homogeneous spaces for finite group schemes”, Proc. AMS, 22:3 (1969), 678–680 | DOI | MR | Zbl

[33] Tate J., $WC$-groups over $p$-acid fields, Sem. Bourbaki, 156, 1957

[34] Tate J., “Duality theorems in Galois cohomology over number fields”, Proc. Intern. Congress Math., Stockholm, 1962, 288–295 | MR

[35] Teit Dzh., “O gipotezakh Bërga–Suinnertona-Daiera i ikh geometricheskom analoge”, Matematika, 12:6 (1968), 41–56

[36] Teit Dzh., “Endomorfizmy abelevykh mnogoobrazii nad konechnymi polyami”, Matematika, 12:6 (1968), 134–144

[37] Verdier J. L., “A duality theorem in the etale cohomology of schemes”, Local fields, Springer-Verlag, Berlin, New York, 1967, 184–198 | MR

[38] Weil A., “On algebraic groups and homogeneous spaces”, Am. J. Math., 77 (1955), 493–512 | DOI | MR | Zbl

[39] Veil A., “Adeli i algebraicheskie gruppy”, Matematika, 8:4 (1964), 3–74

[40] Vvedenskii O. N., “O lokalnykh “polyakh klassov” ellipticheskikh krivykh”, Izv. AN SSSR. Ser. matem., 37 (1973), 20–88 | MR

[41] Vvedenskii O. N., “O kvazi-lokalnykh polyakh klassov ellipticheskikh krivykh. I.”, Izv. AN SSSR. Ser. matem., 40 (1976), 969–992 | MR

[42] Vvedenskii O. N., “O sparivaniyakh v ellipticheskikh krivykh nad globalnymi polyami”, Dokl. AN USSR, ser. A, 1976, no. 8, 675–677 | MR

[43] Birch B. J., Swinnerton-Dyer H. P. F., “Notes on elliptic curves. I, II”, J. reine und angew. Math., 212:1 (1963), 7–25 ; 218:1 (1965), 79–108 | MR | Zbl | MR | Zbl

[44] Bashmakov M. I., “Kogomologii abelevykh mnogoobrazii nad chislovym polem”, Uspekhi matem. nauk, XXVII:6 (1972), 25–66

[45] Ree R., “Proof of a conjecture of S. Chowla”, J. Number Theory, 3 (1971), 210–212 | DOI | MR | Zbl

[46] Cassels J. W. S., “Arithmetic on curves of genus one. VI”, J. reine angew Math., 214/215 (1964), 65–70 | MR | Zbl

[47] Teit Dzh. T., Shafarevich I. R., “O range ellipticheskikh krivykh”, Dokl. AN SSSR, 175:4 (1967), 770–773 | MR

[48] Cassels J. W. S., Ellison W. J., Pfister A., “On sums of squares and on elliptic curvesover function fields”, J. Number Theory, 3:2 (1971), 125–149 | DOI | MR | Zbl

[49] Cassels J. W. S., “Arithmetic on curves of genus one. VIII”, J. reine angew. Math., 217 (1965), 180–199 | MR | Zbl