On the word and divisibility problems in semigroups with a~single defining relation
Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 207-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the word problem and left (right) divisibility problem in an arbitrary semigroup with a single defining relation can be reduced to the respective problems for a single relation which is left (or right) noncancellative. Bibliography: 2 titles.
@article{IM2_1978_12_2_a0,
     author = {S. I. Adian and G. U. Oganesyan},
     title = {On the word and divisibility problems in semigroups with a~single defining relation},
     journal = {Izvestiya. Mathematics },
     pages = {207--212},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - G. U. Oganesyan
TI  - On the word and divisibility problems in semigroups with a~single defining relation
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 207
EP  - 212
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a0/
LA  - en
ID  - IM2_1978_12_2_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A G. U. Oganesyan
%T On the word and divisibility problems in semigroups with a~single defining relation
%J Izvestiya. Mathematics 
%D 1978
%P 207-212
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a0/
%G en
%F IM2_1978_12_2_a0
S. I. Adian; G. U. Oganesyan. On the word and divisibility problems in semigroups with a~single defining relation. Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 207-212. http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a0/

[1] Adyan S. I., “Opredelyayuschie sootnosheniya i algoritmicheskie problemy dlya grupp i polugrupp”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 85, 1966, 1–124 | MR | Zbl

[2] Adyan S. I., “O preobrazovaniyakh slov v polugruppe, zadannoi sistemoi opredelyayuschikh sootnoshenii”, Algebra i logika, 15:6 (1976), 611–621 | MR | Zbl