Separation and translation of Euler equations in linear topological spaces
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 194-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

A condition is found for the disjointness of nonempty convex cones $\Omega_i$, $\Omega\subset$ l.t.s. $X$, for the case when the $\Omega_i$ are open only in their carriers $\Pi_i$, $\operatorname{codim}\Pi_i>\infty$. Under these assumptions a theory of translation is constructed for nontrivial solutions of the Euler equation in inductive systems of l.t.s. Bibliography: 6 titles.
@article{IM2_1978_12_1_a7,
     author = {A. Ya. Dubovitskii},
     title = {Separation and translation of {Euler} equations in linear topological spaces},
     journal = {Izvestiya. Mathematics },
     pages = {194--204},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a7/}
}
TY  - JOUR
AU  - A. Ya. Dubovitskii
TI  - Separation and translation of Euler equations in linear topological spaces
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 194
EP  - 204
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a7/
LA  - en
ID  - IM2_1978_12_1_a7
ER  - 
%0 Journal Article
%A A. Ya. Dubovitskii
%T Separation and translation of Euler equations in linear topological spaces
%J Izvestiya. Mathematics 
%D 1978
%P 194-204
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a7/
%G en
%F IM2_1978_12_1_a7
A. Ya. Dubovitskii. Separation and translation of Euler equations in linear topological spaces. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 194-204. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a7/