The local Torelli theorem for varieties with divisible canonical class
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 53-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the local Torelli theorem is proved for a number of varieties with divisible canonical class: surfaces with a family of elliptic curves and base $P^1$, fiberings by varieties with $K=0$ whose base is a curve, complete intersections, cyclic coverings, and surfaces with $V$, $K>0$, $\operatorname{Pic}V=Z$ and $h^{1,0}=0$, whose invariants satisfy certain conditions. Bibliography: 7 titles.
@article{IM2_1978_12_1_a2,
     author = {K. I. Kii},
     title = {The local {Torelli} theorem for varieties with divisible canonical class},
     journal = {Izvestiya. Mathematics },
     pages = {53--67},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a2/}
}
TY  - JOUR
AU  - K. I. Kii
TI  - The local Torelli theorem for varieties with divisible canonical class
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 53
EP  - 67
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a2/
LA  - en
ID  - IM2_1978_12_1_a2
ER  - 
%0 Journal Article
%A K. I. Kii
%T The local Torelli theorem for varieties with divisible canonical class
%J Izvestiya. Mathematics 
%D 1978
%P 53-67
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a2/
%G en
%F IM2_1978_12_1_a2
K. I. Kii. The local Torelli theorem for varieties with divisible canonical class. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a2/

[1] Griffiths P. A., “Periods of integrals on algebraic manifolds. II”, Amer. J. Math., 90:3 (1968), 805–866 | DOI | MR

[2] Kii K. I., “Lokalnaya teorema Torelli dlya tsiklicheskikh nakrytii $P^n$ s polozhitelnym kanonicheskim klassom”, Matem. sb., 92:1 (1973), 142–151 | MR | Zbl

[3] Peters C., “The local Torelli theorem. I”, Math. Ann., 217:1 (1975), 1–16 | DOI | MR | Zbl

[4] Bott R., “Homogeneous vector bundles”, Ann. Math., 66:2 (1957), 203–248 | DOI | MR | Zbl

[5] Chzhen Shen-Shen, Kompleksnye mnogoobraziya, IL., M., 1967

[6] Algebraicheskie poverkhnosti, Nauka, M., 1965

[7] Kodaira K., “On compact complex analytic surfaces. I”, Ann. Math., 71:1 (1960), 111–152 | DOI | MR | Zbl