Normal subgroups of free profinite groups
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 1-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify up to isomorphism the normal subgroups of free profinite groups and also of their analogues, the so-called free pro-$\Delta$-groups, which include free prosoluble groups and free pro-$\pi$-groups (where $\pi$ is a set of primes). We prove that if $N$ is a normal subgroup of a free рго-$\Delta$-group, then any proper normal subgroup of $N$ of finite index is a free рrо-$\Delta$-group. We find a set of conditions that are comparatively easy to check, which guarantee the freeness of a normal subgroup of a free pro-$\Delta$-group. We discuss the question of when a normal subgroup of a free рrо-$\Delta$-group is determined by the set of its finite homomorphic images. Bibliography: 10 titles.
@article{IM2_1978_12_1_a0,
     author = {O. V. Mel'nikov},
     title = {Normal subgroups of free profinite groups},
     journal = {Izvestiya. Mathematics },
     pages = {1--20},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a0/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - Normal subgroups of free profinite groups
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 1
EP  - 20
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a0/
LA  - en
ID  - IM2_1978_12_1_a0
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T Normal subgroups of free profinite groups
%J Izvestiya. Mathematics 
%D 1978
%P 1-20
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a0/
%G en
%F IM2_1978_12_1_a0
O. V. Mel'nikov. Normal subgroups of free profinite groups. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a0/

[1] Binz E., Neukirch J., Wentzel G. H., “A subgroup theorem for free products of profinite groups”, J. Algebra, 19:1 (1971), 104–109 | DOI | MR | Zbl

[2] Douady A., “Cohomologie des groupes compacts totalement discontinus”, Séminaire Bourbaki, vol. 5, no. 189, Soc. Math. France, Paris, 1995, 287–298 | MR

[3] Gildenhuys D., Ribes L., “A Kurosh subgroup theorem for free pro-$C$-products of pro-$C$-groups”, Trans. Amer. Math. Soc., 186 (1973), 309–329 | DOI | MR

[4] Gruenberg K. W., “Projective profinite groups”, J. London Math. Soc., 42:1 (1967), 155–165 | DOI | MR | Zbl

[5] Huppert B., Endliche Gruppen, Springer, Berlin, Heidelberg, New York, 1967 | MR | Zbl

[6] Iwasawa K., “On solvable extensions of algebraic number fields”, Ann. Math., 58:3 (1953), 548–572 | DOI | MR | Zbl

[7] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[8] Melnikov O. V., “Kongruents-yadro gruppy $SL_2(Z)$”, Dokl. AN SSSR, 228:5 (1976), 1034–1036 | MR

[9] Neukirch J., “Freie Produkte pro-endlicher Gruppen und ihre Kohomologie”, Arch. Math., 22:4 (1971), 337–357 | DOI | MR | Zbl

[10] Cepp Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR