Solvability of a~problem on the motion of a~viscous incompressible fluid bounded by a~free surface
Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1323-1358.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a single-valued classical solution, local with respect to the time, of an initial-boundary value problem for the system of Navier–Stokes equations describing, in a specified force field, the motion of a finite mass of fluid with a free surface. In this problem, not only are the velocity and pressure of the fluid to be determined, but also the region which the fluid occupies at each instant of time. In studying this problem we employ Lagrangian coordinates. Bibliography: 10 titles.
@article{IM2_1977_11_6_a7,
     author = {V. A. Solonnikov},
     title = {Solvability of a~problem on the motion of a~viscous incompressible fluid bounded by a~free surface},
     journal = {Izvestiya. Mathematics },
     pages = {1323--1358},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a7/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - Solvability of a~problem on the motion of a~viscous incompressible fluid bounded by a~free surface
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 1323
EP  - 1358
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a7/
LA  - en
ID  - IM2_1977_11_6_a7
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T Solvability of a~problem on the motion of a~viscous incompressible fluid bounded by a~free surface
%J Izvestiya. Mathematics 
%D 1977
%P 1323-1358
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a7/
%G en
%F IM2_1977_11_6_a7
V. A. Solonnikov. Solvability of a~problem on the motion of a~viscous incompressible fluid bounded by a~free surface. Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1323-1358. http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a7/

[1] Solonnikov V. A., “Otsenki resheniya odnoi nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Zap. nauchn. seminarov Leningr. otd. Matem. in-ta AN SSSR, 59, 1976, 178–254 | MR | Zbl

[2] Solonnikov V. A., “O razreshimosti vtoroi nachalno-kraevoi zadachi dlya lineinoi nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Zap. nauchn. seminarov Leningr. otd. Matem. in-ta AN SSSR, 69, 1977, 200–218 | MR | Zbl

[3] Ovsyannikov L. V., Obschie uravneniya i primery, Zadacha o neustanovivshemsya dvizhenii zhidkosti so svobodnoi granitsei, Nauka, Novosibirsk, 1907

[4] Ovsyannikov L. V., “K obosnovaniyu teorii melkoi vody”, Dinamika sploshnoi sredy, no. 8, Novosibirsk, 1972, 22–26

[5] Nalimov V. I., “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, no. 18, Novosibirsk, 1974, 104–210 | MR

[6] Nalimov V. I., Pukhnachev V. V., Neustanovivshiesya dvizheniya idealnoi zhidkosti so svobodnoi granitsei, Novosibirsk, 1975

[7] Pukhnachev V. V., Zadachi so svobodnoi granitsei dlya uravnenii Nave–Stoksa, Dissertatsiya na soiskanie uchenoi stepeni doktora fiz.-matem. nauk, Novosibirsk, 1974

[8] Solonnikov V. A., “Otsenki reshenii nestatsionarnoi sistemy Nave–Stoksa”, Zap. nauchn. seminarov Leningr. otd. Matem. in-ta AN SSSR, 38, 1973, 153–231 | MR | Zbl

[9] Bytev V. I., “Neustanovivshiesya dvizheniya vraschayuschegosya koltsa vyazkoi neszhimaemoi zhidkosti so svobodnoi granitsei”, PMTF, 1970, no. 3, 82–88 | MR

[10] Solonnikov V. A., “Razreshimost zadach o dvizhenii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu”, Dinamika sploshnoi sredy, no. 23, Novosibirsk, 1975, 182–197