Lack of interpolation of linear operators in spaces of smooth functions
Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1229-1266
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that $C^k(\Omega)$, the space of $k$ times continuously differentiable functions on the closure of a region in a finite-dimensional manifold, is not an interpolation space between $C(\Omega)$ and $C^n(\Omega)$ for $0$. We find analogous results for the Sobolev–Stein spaces. In the class of spaces $C_\varphi$, defined by the modulus of continuity, we describe all interpolation spaces between $C$ and $C^2$.
Bibliography: 34 titles.
@article{IM2_1977_11_6_a4,
author = {B. S. Mityagin and E. M. Semenov},
title = {Lack of interpolation of linear operators in spaces of smooth functions},
journal = {Izvestiya. Mathematics },
pages = {1229--1266},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a4/}
}
TY - JOUR AU - B. S. Mityagin AU - E. M. Semenov TI - Lack of interpolation of linear operators in spaces of smooth functions JO - Izvestiya. Mathematics PY - 1977 SP - 1229 EP - 1266 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a4/ LA - en ID - IM2_1977_11_6_a4 ER -
B. S. Mityagin; E. M. Semenov. Lack of interpolation of linear operators in spaces of smooth functions. Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1229-1266. http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a4/