Best quadrature formula for some classes of periodic differentiable functions
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 1055-1071.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work there is solved the problem of the best quadrature formula of the form $$ \int_0^1f(x)\,dx=\sum_{i=1}^na_if(x_i)+R(f) $$ on the classes of periodic functions $W^r_p$ ($r=1,2,\dots$; $1\leqslant p\leqslant\infty$). Bibliography: 13 titles.
@article{IM2_1977_11_5_a7,
     author = {A. A. Zhensykbaev},
     title = {Best quadrature formula for some classes of periodic differentiable functions},
     journal = {Izvestiya. Mathematics },
     pages = {1055--1071},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a7/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Best quadrature formula for some classes of periodic differentiable functions
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 1055
EP  - 1071
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a7/
LA  - en
ID  - IM2_1977_11_5_a7
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Best quadrature formula for some classes of periodic differentiable functions
%J Izvestiya. Mathematics 
%D 1977
%P 1055-1071
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a7/
%G en
%F IM2_1977_11_5_a7
A. A. Zhensykbaev. Best quadrature formula for some classes of periodic differentiable functions. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 1055-1071. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a7/

[1] Lushpai N. E., “Nailuchshie kvadraturnye formuly na klassakh differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 6:4 (1969), 475–481 | MR | Zbl

[2] Lushpai N. E., “Ob odnoi optimalnoi kvadrature dlya klassa differentsiruemykh periodicheskikh funktsii”, Izv. vuzov, matem., 1973, no. 4(131), 55–63 | MR | Zbl

[3] Korneichuk N. P., Lushpai N. E., “Nailuchshie kvadraturnye formuly dlya klassov differentsiruemykh funktsii i kusochno-polinomialnoe priblizhenie”, Izv. AN SSSR. Ser. matem., 33 (1969), 1416–1437

[4] Busarova T. N., “Nailuchshie kvadraturnye formuly dlya odnogo klassa differentsiruemykh periodicheskikh funktsii”, Ukr. matem. zh., 25:3 (1973), 291–301 | MR | Zbl

[5] Motornyi V. P., “O nailuchshei kvadraturnoi formule vida $\sum_{i=1}^{n}p_if(x_i)$ dlya nekotorykh klassov periodicheskikh differentsiruemykh funktsii”, Izv. AN SSSR. Ser. matem., 38 (1974), 583–614 | MR | Zbl

[6] Ligun A. A., “Tochnye neravenstva dlya splain-funktsii i nailuchshie kvadraturnye formuly dlya nekotorykh klassov funktsii”, Matem. zametki, 19:6 (1976), 913–926 | MR

[7] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1974 | MR

[8] Zhensykbaev A. A., “Priblizhenie nekotorykh klassov differentsiruemykh periodicheskikh funktsii interpolyatsionnymi splainami po ravnomernomu razbieniyu”, Matem. zametki, 15:6 (1974), 955–966 | Zbl

[9] Zhensykbaev A. A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh periodicheskikh funktsii splainami $r$-go poryadka”, Matem. zametki, 13:2 (1973), 217–228 | Zbl

[10] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967 | MR

[11] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[12] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[13] Zhensykbaev A. A., “O nailuchshei kvadraturnoi formule na klasse $W^r L_p$”, Dokl. AN SSSR, 227:2 (1976), 277–279 | MR | Zbl