Best quadrature formula for some classes of periodic differentiable functions
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 1055-1071
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work there is solved the problem of the best quadrature formula of the form
$$
\int_0^1f(x)\,dx=\sum_{i=1}^na_if(x_i)+R(f)
$$
on the classes of periodic functions $W^r_p$ ($r=1,2,\dots$; $1\leqslant p\leqslant\infty$).
Bibliography: 13 titles.
@article{IM2_1977_11_5_a7,
author = {A. A. Zhensykbaev},
title = {Best quadrature formula for some classes of periodic differentiable functions},
journal = {Izvestiya. Mathematics },
pages = {1055--1071},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a7/}
}
A. A. Zhensykbaev. Best quadrature formula for some classes of periodic differentiable functions. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 1055-1071. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a7/