$p$-divisible groups over~$\mathbf Z$
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 937-956
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is shown that:
a) there do not exist 3-dimensional abelian varieties over $\mathbf Q$ having everywhere good reduction:
b) every 2-divisible group over $\mathbf Z$ of height $\leqslant6$ is isogenous to the trivial one;
c) for irregular primes $p$ there exist nontrivial $p$-divisible groups over $\mathbf Z$.
Bibliography: 6 titles.
@article{IM2_1977_11_5_a1,
author = {V. A. Abrashkin},
title = {$p$-divisible groups over~$\mathbf Z$},
journal = {Izvestiya. Mathematics },
pages = {937--956},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a1/}
}
V. A. Abrashkin. $p$-divisible groups over~$\mathbf Z$. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 937-956. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a1/