Complex homogeneous spaces of semisimple Lie groups of type $D_n$
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 783-805
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a connected Lie group, the simple normal subgroups of which are of the first category or are isomorphic to $\operatorname{SO}(2k+1,2l+1)$. In this paper all connected closed subgroups $U$ in $G$ are enumerated for which there exists a complex structure on the manifold $M=G/U$ which is invariant with respect to $G$, and all such structures on $M$ are given.
Bibliography: 5 titles.
@article{IM2_1977_11_4_a4,
author = {F. M. Malyshev},
title = {Complex homogeneous spaces of semisimple {Lie} groups of type $D_n$},
journal = {Izvestiya. Mathematics },
pages = {783--805},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a4/}
}
F. M. Malyshev. Complex homogeneous spaces of semisimple Lie groups of type $D_n$. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 783-805. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a4/