Complex homogeneous spaces of semisimple Lie groups of type $D_n$
Izvestiya. Mathematics, Tome 11 (1977) no. 4, pp. 783-805
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a connected Lie group, the simple normal subgroups of which are of the first category or are isomorphic to $\operatorname{SO}(2k+1,2l+1)$. In this paper all connected closed subgroups $U$ in $G$ are enumerated for which there exists a complex structure on the manifold $M=G/U$ which is invariant with respect to $G$, and all such structures on $M$ are given. Bibliography: 5 titles.
@article{IM2_1977_11_4_a4,
author = {F. M. Malyshev},
title = {Complex homogeneous spaces of semisimple {Lie} groups of type $D_n$},
journal = {Izvestiya. Mathematics},
pages = {783--805},
year = {1977},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a4/}
}
F. M. Malyshev. Complex homogeneous spaces of semisimple Lie groups of type $D_n$. Izvestiya. Mathematics, Tome 11 (1977) no. 4, pp. 783-805. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a4/
[1] Wolf J. A., “The action of a real semisimple group a complex flag manifold, I”, Bull. Amer. Math. Soc., 75:6 (1969), 1121–1237 | DOI | MR | Zbl
[2] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72):2 (1952), 349–462 | MR | Zbl
[3] Onischik A. L., “Razlozheniya reduktivnykh grupp Li”, Matem. sb., 80:4 (1969), 553–599 | Zbl
[4] Malyshev F. M., “Kompleksnye odnorodnye prostranstva poluprostykh grupp Li pervoi kategorii”, Izv. AN SSSR. Ser. matem., 39 (1975), 992–1002 | Zbl
[5] Malyshev F. M., “Kompleksnye odnorodnye prostranstva grupp Li $SO(2k+1,2l+1)$”, Izv. AN SSSR. Ser. matem., 40 (1976), 806–827 | MR | Zbl