Duality in an infinite cyclic covering and even-dimensional knots
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 749-781.

Voir la notice de l'article provenant de la source Math-Net.Ru

Pairings are constructed defined on the torsion subgroups of the integral homology groups of the infinite cyclic covering of a compact manifold with values in the factor group of the rationals modulo the integers. This gives invariants of even-dimensional knots, with the help of which three problems of R. H. Fox about two-dimensional knots in four-dimensional space are solved. Bibliography: 25 titles.
@article{IM2_1977_11_4_a3,
     author = {M. Sh. Farber},
     title = {Duality in an infinite cyclic covering and even-dimensional knots},
     journal = {Izvestiya. Mathematics },
     pages = {749--781},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/}
}
TY  - JOUR
AU  - M. Sh. Farber
TI  - Duality in an infinite cyclic covering and even-dimensional knots
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 749
EP  - 781
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/
LA  - en
ID  - IM2_1977_11_4_a3
ER  - 
%0 Journal Article
%A M. Sh. Farber
%T Duality in an infinite cyclic covering and even-dimensional knots
%J Izvestiya. Mathematics 
%D 1977
%P 749-781
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/
%G en
%F IM2_1977_11_4_a3
M. Sh. Farber. Duality in an infinite cyclic covering and even-dimensional knots. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 749-781. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/

[1] Blanchfield R. C., “Intersection theory of manifolds with operators with applications to knot theory”, Ann. Math., 65 (1957), 340–356 | DOI | MR | Zbl

[2] Kearton C., “Blanchfield duality and simple knots”, Trans. Amer. Math. Soc., 202 (1975), 141–160 | DOI | MR | Zbl

[3] Milnor J., “Infinite cyclic coverings”, Conference on the Topology of manifolds, Boston, 1968, 115–133 | MR | Zbl

[4] Erle D., “Die quadratische Form eines Knotens und ein Satz über Knotenmannigfaltigkeiten”, J. Reine Angew. Math., 296 (1969), 174–218 | MR

[5] Erle D., “Quadratische Formen als Invarianten von Einbettungen der Kodimension 2”, Topology, 8 (1969), 99–114 | DOI | MR | Zbl

[6] Novikov S. P., “O mnogoobraziyakh so svobodnoi abelevoi fundamentalnoi gruppoi i ikh primeneniyakh”, Izv. AN SSSR. Ser. matem., 30 (1966), 207–246 | MR | Zbl

[7] Fox R. H., “Some problems in knot theory”, Topology of 3-Manifolds and related topics, Proc. of the 1961 Topology Institute at the Univ. of Georgia, 1962, 168–178 | MR

[8] Novikov S. P., “Ratsionalnye klassy Pontryagina. Gomeomorfizm i gomotopicheskii tip zamknutykh mnogoobrazii, I”, Izv. AN SSSR. Ser. matem., 29 (1965), 1373–1388 | MR | Zbl

[9] Rokhlin V. A., “Klass Pontryagina–Khirtsebrukha korazmernosti 2”, Izv. AN SSSR. Ser. matem., 30 (1966), 705–718 | Zbl

[10] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[11] Epstein D. B. A., “Ends”, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J.,, 1962, 110–117 | MR

[12] Fuks L., Beskonechnye abelevy gruppy, t. I, Mir, M., 1974

[13] Farber M. Sh., Teorema dvoistvennosti dlya beskonechnogo tsiklicheskogo nakrytiya, Deponir. VINITI, No 323-74; RZh Matem., 1974, No 6, ref. No 6A675

[14] Farber M. Sh., Koeffitsienty zatsepleniya v beskonechnom tsiklicheskom nakrytii i tri problemy Foksa o dvumernykh uzlakh, Deponir. VINITI, No 1272-74; RZh Matem., 1974, No 9, ref. No 9A640

[15] Farber M. Sh., “Koeffitsienty zatsepleniya i dvumernye uzly”, Dokl. AN SSSR, 222 (1975), 299–301 ; 226:2 (1976), 248 | MR | Zbl | MR | Zbl

[16] Fox R. H., “A quick trip through knot theory”, Topology of 3-Manifolds and related topics, Proc. of the 1961 Topology Institute at the Univ. of Georgia, 1962, 120–167 | MR

[17] Kervaire M. A., “Les noeuds de dimensions superieures”, Bull. Soc. Math. France, 93 (1965), 225–271 | MR | Zbl

[18] Yajima T., “On a characterization of knot groups of some spheres in $\mathbf{R}^4$”, Osaka J. Math., 6 (1969), 435–446 | MR

[19] Yajima T., “Wirtinger presentations of knot groups”, Proc. Japan Acad., 46 (1970), 997–1000 | DOI | MR | Zbl

[20] Wall C. T. C., “Loccally flat $PL$ submanifolds with codimension two”, Proc. Cambridge Phil. Soc., 63 (1967), 5–8 | DOI | MR | Zbl

[21] Gutierrez M. A., “On knot modules”, Invent. Math., 17 (1972), 329–335 | DOI | MR | Zbl

[22] Krouell R., Foks R., Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR

[23] Farber M. Sh., “Ob odnom invariante $(4k-1)$-mernogo mnogoobraziya”, Uspekhi matem. nauk, 30:3 (1975), 179–180 | MR | Zbl

[24] Viro O. Ya., “Raspolozheniya v korazmernosti 2 i krai”, Uspekhi matem. nauk, 30:1 (1975), 231–232 | MR | Zbl

[25] Levine J., “Knot modules”, Knots, groups, and $3$-manifolds, Papers dedicated to the memory of R. H. Fox, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, 25–34 | MR