Duality in an infinite cyclic covering and even-dimensional knots
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 749-781

Voir la notice de l'article provenant de la source Math-Net.Ru

Pairings are constructed defined on the torsion subgroups of the integral homology groups of the infinite cyclic covering of a compact manifold with values in the factor group of the rationals modulo the integers. This gives invariants of even-dimensional knots, with the help of which three problems of R. H. Fox about two-dimensional knots in four-dimensional space are solved. Bibliography: 25 titles.
@article{IM2_1977_11_4_a3,
     author = {M. Sh. Farber},
     title = {Duality in an infinite cyclic covering and even-dimensional knots},
     journal = {Izvestiya. Mathematics },
     pages = {749--781},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/}
}
TY  - JOUR
AU  - M. Sh. Farber
TI  - Duality in an infinite cyclic covering and even-dimensional knots
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 749
EP  - 781
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/
LA  - en
ID  - IM2_1977_11_4_a3
ER  - 
%0 Journal Article
%A M. Sh. Farber
%T Duality in an infinite cyclic covering and even-dimensional knots
%J Izvestiya. Mathematics 
%D 1977
%P 749-781
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/
%G en
%F IM2_1977_11_4_a3
M. Sh. Farber. Duality in an infinite cyclic covering and even-dimensional knots. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 749-781. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/