Duality in an infinite cyclic covering and even-dimensional knots
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 749-781
Voir la notice de l'article provenant de la source Math-Net.Ru
Pairings are constructed defined on the torsion subgroups of the integral homology groups of the infinite cyclic covering of a compact manifold with values in the factor group of the rationals modulo the integers. This gives invariants of even-dimensional knots, with the help of which three problems of R. H. Fox about two-dimensional knots in four-dimensional space are solved.
Bibliography: 25 titles.
@article{IM2_1977_11_4_a3,
author = {M. Sh. Farber},
title = {Duality in an infinite cyclic covering and even-dimensional knots},
journal = {Izvestiya. Mathematics },
pages = {749--781},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/}
}
M. Sh. Farber. Duality in an infinite cyclic covering and even-dimensional knots. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 749-781. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a3/