The Thue--Mahler equation in a~relative field and approximation of algebraic numbers by algebraic numbers
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 677-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new estimate of the solutions of the generalized Thue–Mahler equation is derived, which explicitly exhibits the influence of all fundamental parameters of the equation on the magnitude of the solutions. Also, an effective power sharpening is given of “Liouville's inequality” relating to the approximation of algebraic numbers by algebraic numbers of a fixed field, which includes both Archimedean and non-Archimedean valuations. Bibliography: 19 titles.
@article{IM2_1977_11_4_a0,
     author = {S. V. Kotov and V. G. Sprindzhuk},
     title = {The {Thue--Mahler} equation in a~relative field and approximation of algebraic numbers by algebraic numbers},
     journal = {Izvestiya. Mathematics },
     pages = {677--707},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a0/}
}
TY  - JOUR
AU  - S. V. Kotov
AU  - V. G. Sprindzhuk
TI  - The Thue--Mahler equation in a~relative field and approximation of algebraic numbers by algebraic numbers
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 677
EP  - 707
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a0/
LA  - en
ID  - IM2_1977_11_4_a0
ER  - 
%0 Journal Article
%A S. V. Kotov
%A V. G. Sprindzhuk
%T The Thue--Mahler equation in a~relative field and approximation of algebraic numbers by algebraic numbers
%J Izvestiya. Mathematics 
%D 1977
%P 677-707
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a0/
%G en
%F IM2_1977_11_4_a0
S. V. Kotov; V. G. Sprindzhuk. The Thue--Mahler equation in a~relative field and approximation of algebraic numbers by algebraic numbers. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 677-707. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a0/

[1] Kotov S. V., Sprindzhuk V. G., “Effektivnyi analiz uravneniya Tue–Malera v otnositelnykh polyakh”, Dokl. AN BSSR, 17:5 (1973), 393–396 | MR

[2] Kotov S. V., “Uravnenie Tue–Malera v otnositelnykh polyakh”, Acta Arithmetica, 27 (1975), 293–315 | MR | Zbl

[3] Sprindzhuk V. G., “Novoe primenenie $p$-adicheskogo analiza k predstavleniyu chisel binarnymi formami”, Izv. AN SSSR. Ser. matem., 34 (1970), 1038–1063 | Zbl

[4] Sprindzhuk V. G., “O ratsionalnykh priblizheniyakh k algebraicheskim chislam”, Izv. AN SSSR. Ser. matem., 35 (1971), 991–1007 | MR | Zbl

[5] Sprindzhuk V. G., “Ob otsenke reshenii uravneniya Tue”, Izv. AN SSSR. Ser. matem., 36 (1972), 712–741

[6] Baker A., “A sharpening of the bounds for linear forms in logarithms, I, II, III”, Acta Arithmetica, 21 (1972), 117–129 ; 24 (1973), 33–36 ; 27 (1974), 247–252 | MR | Zbl | MR | Zbl

[7] Feldman N. I., “Odno neravenstvo, svyazannoe s lineinymi formami ot logarifmov algebraicheskikh chisel”, Dokl. AN SSSR, 207:1 (1972), 41–43 | MR

[8] Sprindzhuk V. G., “O strukture chisel, predstavimykh binarnymi formami”, Dokl. AN BSSR, 17:8 (1973), 685–688

[9] Chebotarev N. G., Osnovy teorii Galua, ch. II, ONTI, M., L., 1937

[10] Sprindzhuk V. G., “Effektivnyi analiz uravnenii Tue i Tue–Malera”, Aktualnye problemy analiticheskoi teorii chisel, Nauka i tekhnika, Minsk, 1974 | MR

[11] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[12] Lenskoi D. A., Funktsii v nearkhimedovski normirovannykh polyakh, Saratovsk. un-t, 1962 | MR | Zbl

[13] Hasse H., Zahlentheorie, Akademie Verlag, Berlin, 1963 | MR | Zbl

[14] Siegel C. L., “Abschätzung von Einheiten”, Nachr. Acad. Wiss. Göttingen, 9 (1969), 71–86 | MR

[15] Chebyshev P. L., Izbrannye trudy, AN SSSR, M., 1955

[16] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[17] Sprindzhuk V. G., “Diofantovy uravneniya i chisla klassov idealov”, Matem. zametki, 17:1 (1975), 161–168 | Zbl

[18] Feldman N. I., “Effektivnoe stepennoe usilenie teoremy Liuvillya”, Izv. AN SSSR. Ser. matem., 35 (1971), 973–990

[19] Mahler K., “On the approximation of algebraic numbers by algebraic integers”, J. Austral. Math. Soc., 3 (1963), 408–434 | DOI | MR | Zbl