Denjoy--Khinchin-integrable functions and their conjugates
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 625-664
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper $2\pi$-periodic functions $\Phi(x)$ and $\Psi(x)$ are constructed so that they are both Denjoy–Khinchin integrable, are not equivalent to zero, and have conjugates $\overline\Phi$ and $\overline\Psi$ satisfying $\overline\Phi(x)=0$ almost everywhere and $\overline\Psi(x)=1$ almost everywhere.
Bibliography: 12 titles.
@article{IM2_1977_11_3_a8,
author = {T. P. Lukashenko},
title = {Denjoy--Khinchin-integrable functions and their conjugates},
journal = {Izvestiya. Mathematics },
pages = {625--664},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a8/}
}
T. P. Lukashenko. Denjoy--Khinchin-integrable functions and their conjugates. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 625-664. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a8/