Denjoy--Khinchin-integrable functions and their conjugates
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 625-664

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper $2\pi$-periodic functions $\Phi(x)$ and $\Psi(x)$ are constructed so that they are both Denjoy–Khinchin integrable, are not equivalent to zero, and have conjugates $\overline\Phi$ and $\overline\Psi$ satisfying $\overline\Phi(x)=0$ almost everywhere and $\overline\Psi(x)=1$ almost everywhere. Bibliography: 12 titles.
@article{IM2_1977_11_3_a8,
     author = {T. P. Lukashenko},
     title = {Denjoy--Khinchin-integrable functions and their conjugates},
     journal = {Izvestiya. Mathematics },
     pages = {625--664},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a8/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - Denjoy--Khinchin-integrable functions and their conjugates
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 625
EP  - 664
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a8/
LA  - en
ID  - IM2_1977_11_3_a8
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T Denjoy--Khinchin-integrable functions and their conjugates
%J Izvestiya. Mathematics 
%D 1977
%P 625-664
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a8/
%G en
%F IM2_1977_11_3_a8
T. P. Lukashenko. Denjoy--Khinchin-integrable functions and their conjugates. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 625-664. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a8/