On the approximation by algebraic polynomials of functions of class~$L^p$, $0$
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 613-623

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, Whitney's inequality $$ E_{k-1}(f;[a,b])\leqslant M_k\omega_k\biggl(\frac{b-a}k,f\biggr) $$ for bounded functions $f$ on $[a,b]$ is extended to the case $f\in L^p(a,b)$ for $0$. Bibliography: 10 titles.
@article{IM2_1977_11_3_a7,
     author = {\`E. A. Storozhenko},
     title = {On the approximation by algebraic polynomials of functions of class~$L^p$, $0<p<1$},
     journal = {Izvestiya. Mathematics },
     pages = {613--623},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a7/}
}
TY  - JOUR
AU  - È. A. Storozhenko
TI  - On the approximation by algebraic polynomials of functions of class~$L^p$, $0
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 613
EP  - 623
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a7/
LA  - en
ID  - IM2_1977_11_3_a7
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%T On the approximation by algebraic polynomials of functions of class~$L^p$, $0
%J Izvestiya. Mathematics 
%D 1977
%P 613-623
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a7/
%G en
%F IM2_1977_11_3_a7
È. A. Storozhenko. On the approximation by algebraic polynomials of functions of class~$L^p$, $0