On the approximation by algebraic polynomials of functions of class~$L^p$, $0$
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 613-623
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article, Whitney's inequality
$$
E_{k-1}(f;[a,b])\leqslant M_k\omega_k\biggl(\frac{b-a}k,f\biggr)
$$
for bounded functions $f$ on $[a,b]$ is extended to the case $f\in L^p(a,b)$ for $0$.
Bibliography: 10 titles.
@article{IM2_1977_11_3_a7,
author = {\`E. A. Storozhenko},
title = {On the approximation by algebraic polynomials of functions of class~$L^p$, $0<p<1$},
journal = {Izvestiya. Mathematics },
pages = {613--623},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a7/}
}
È. A. Storozhenko. On the approximation by algebraic polynomials of functions of class~$L^p$, $0