Distribution of the eigenvalues of the Sturm--Liouville operator equation
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 571-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work contains an analysis of the dependence of the lower terms of the asymptotics of the distribution of the eigenvalues of the equation $-y''+Ay=\lambda y$ upon the spectrum of the positive selfadjoint operator $A$ and the form of the boundary conditions. As a corollary the second term is found for the spectral asymptotics of classical boundary value problems for the Laplace equation in three-dimensional cylindrical domains. Bibliography: 20 titles.
@article{IM2_1977_11_3_a5,
     author = {V. A. Mikhailets},
     title = {Distribution of the eigenvalues of the {Sturm--Liouville} operator equation},
     journal = {Izvestiya. Mathematics },
     pages = {571--582},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a5/}
}
TY  - JOUR
AU  - V. A. Mikhailets
TI  - Distribution of the eigenvalues of the Sturm--Liouville operator equation
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 571
EP  - 582
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a5/
LA  - en
ID  - IM2_1977_11_3_a5
ER  - 
%0 Journal Article
%A V. A. Mikhailets
%T Distribution of the eigenvalues of the Sturm--Liouville operator equation
%J Izvestiya. Mathematics 
%D 1977
%P 571-582
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a5/
%G en
%F IM2_1977_11_3_a5
V. A. Mikhailets. Distribution of the eigenvalues of the Sturm--Liouville operator equation. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 571-582. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a5/

[1] Gorbachuk V. I., Gorbachuk M. L., “O nekotorykh klassakh granichnykh zadach dlya uravneniya Shturma–Liuvillya s operatornym potentsialom”, Ukr. matem. zhurnal, 24:3 (1972), 291–304 | MR

[2] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[3] Bachmann P., Die analysche Zahlentheorie, Teubner, Leipzig, 1894 | Zbl

[4] Sonin N. Ya., “Ob odnom opredelennom integrale, soderzhaschem chislovuyu funktsiyu $[x]$”, Varshavskie univ. izvestiya, 1885

[5] Gradshtein I. S, Ryzhik I. M., Tablitsy integralov, summ ryadov i proizvedenii, Fizmatgiz, M., 1962

[6] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR | Zbl

[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[8] Weyl H., “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Math. Ann., 71 (1912), 441–479 | DOI | MR | Zbl

[9] Weyl H., “Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung”, J. Reine Angew. Math., 141 (1912), 1–11 | Zbl

[10] Courant R., “Über die Eingenwerte bei den Differentialgleichungen der mathematischen Physik”, Math. Z., 7 (1920), 1–57 | DOI | MR | Zbl

[11] Bailey P. B., Brownell F. H., “Removal of the log factor in the asymptotic estimates of polygonal membrane eigenvalue”, J. Math. Anal. Appl, 4 (1962), 212–239 | DOI | MR | Zbl

[12] Fedosov B. V., “Asimptoticheskie formuly dlya sobstvennykh znachenii operatora Laplasa v sluchae mnogougolnoi oblasti”, Dokl. AN SSSR, 154:4 (1963), 786–789 | MR

[13] Kuznetsov N. V., “Asimptoticheskoe raspredelenie sobstvennykh chastot ploskoi membrany v sluchae razdelyayuschikhsya peremennykh”, Diff. uravneniya, 2:10 (1966), 1385–1402

[14] Makai E., “Complete orthogonal systems of eigenfunctions of three thiangular membrans”, Studia Sci. Math. Hungar., 5:1,2 (1970), 51–62 | MR | Zbl

[15] Pleiyel A., “On the problem of improving Weyl's law for the asymptotic eigenvalue distribution”, Convagno Internazionale sulle Eguazioni Lineari alle Derivate Partiali (Trieste, 1954), Rome, 1955, 69–75

[16] Brownell F. H., “An extension of Weyl's law for eigenvalues”, Pacif. J. Math., 5 (1955), 483–489 | MR

[17] Brownell F. H., “Extended asymptotic eigenvalue distribution for bounded domains in $n$-space”, J. Math. Mech., 6 (1957), 119–166 | MR | Zbl

[18] Fedosov B. V., “Asimptoticheskie formuly dlya sobstvennykh znachenii operatora Laplasa v sluchae mnogogrannika”, Dokl. AN SSSR, 157:3 (1964), 536–538 | MR | Zbl

[19] Clark C., “The asymptotic distribution on eigenvalues and eigenfunctions for elliptic value problems”, SIAM Review, 9:4 (1967), 627–646 | DOI | MR | Zbl

[20] Kurant R., Gilbert D., Metody matematicheskoi fiziki, t. 1, Gostekhizdat, M., 1951