Distribution of the eigenvalues of the Sturm--Liouville operator equation
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 571-582
Voir la notice de l'article provenant de la source Math-Net.Ru
This work contains an analysis of the dependence of the lower terms of the asymptotics of the distribution of the eigenvalues of the equation $-y''+Ay=\lambda y$ upon the spectrum of the positive selfadjoint operator $A$ and the form of the boundary conditions. As a corollary the second term is found for the spectral asymptotics of classical boundary value problems for the Laplace equation in three-dimensional cylindrical domains.
Bibliography: 20 titles.
@article{IM2_1977_11_3_a5,
author = {V. A. Mikhailets},
title = {Distribution of the eigenvalues of the {Sturm--Liouville} operator equation},
journal = {Izvestiya. Mathematics },
pages = {571--582},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a5/}
}
V. A. Mikhailets. Distribution of the eigenvalues of the Sturm--Liouville operator equation. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 571-582. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a5/