Asymptotic behavior of best approximations of continuous functions
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 551-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that in each class $W^rH_\omega$, $r=0,1,\dots$, with convex modulus of continuity $\omega$ there exists a function $f$ whose best approximations admit the limit behavior $$ \lim_{n\to\infty}E_n(f)/E_n(W^rH_\omega)=1. $$ Bibliography: 11 titles.
@article{IM2_1977_11_3_a4,
     author = {V. N. Temlyakov},
     title = {Asymptotic behavior of best approximations of continuous functions},
     journal = {Izvestiya. Mathematics },
     pages = {551--569},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a4/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Asymptotic behavior of best approximations of continuous functions
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 551
EP  - 569
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a4/
LA  - en
ID  - IM2_1977_11_3_a4
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Asymptotic behavior of best approximations of continuous functions
%J Izvestiya. Mathematics 
%D 1977
%P 551-569
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a4/
%G en
%F IM2_1977_11_3_a4
V. N. Temlyakov. Asymptotic behavior of best approximations of continuous functions. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 551-569. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a4/

[1] Favard J., “Sur les meilleurs procédés d'approximation de certaines classes de fonctions par les polynomes trigonométriques”, Bull. Sci. Math., 61 (1937), 209–224, 243–256 | Zbl

[2] Akhiezer N. I., Krein M. G., “O nailuchshem priblizhenii funktsii posredstvom trigonometricheskikh summ”, Dokl. AN SSSR, 15 (1937), 107–111 | Zbl

[3] Korneichuk N. P., “O nailuchshem ravnomernom priblizhenii na nekotorykh klassakh nepreryvnykh funktsii”, Dokl. AN SSSR, 140 (1961), 748–751

[4] Korneichuk N. P., “Ekstremalnye znacheniya funktsionalov i nailuchshee priblizhenie na klassakh periodicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 35 (1971), 93–124

[5] Bernshtein S. N., “O nailuchshem priblizhenii $|x|$ posredstvom mnogochlenov dannoi stepeni”, Soch., t. 1, M., 1952, 157–206

[6] Bernshtein S. N., “O nailuchshem priblizhenii $|x-c|^p$”, Soch., M., 1954, 273–280

[7] Nikolskii S. M., “O nailuchshem priblizhenii funktsii, $r$-aya proizvodnaya kotoroi imeet razryvy pervogo roda”, Dokl. AN SSSR, 55 (1947), 99–102

[8] Nikolskii S. M., “Nailuchshie priblizheniya mnogochlenami funktsii, udovletvoryayuschikh usloviyu Lipshitsa”, Dokl. AN SSSR, 52 (1946), 7–10

[9] Nikolskii S. M., “Ob interpolirovanii i nailuchshem priblizhenii differentsiruemykh periodicheskikh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 10 (1946), 393–410

[10] Oskolkov K. I., “Otsenka priblizheniya nepreryvnykh funktsii podposledovatelnostyami summ Fure”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 134, 1975, 240–253 | MR | Zbl

[11] Temlyakov V. N., “Ob asimptoticheskom povedenii nailuchshikh priblizhenii nepreryvnykh funktsii”, Dokl. AN SSSR, 228:2 (1976), 318–321