Asymptotic behavior of best approximations of continuous functions
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 551-569
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is proved that in each class $W^rH_\omega$, $r=0,1,\dots$, with convex modulus of continuity $\omega$ there exists a function $f$ whose best approximations admit the limit behavior
$$
\lim_{n\to\infty}E_n(f)/E_n(W^rH_\omega)=1.
$$ Bibliography: 11 titles.
@article{IM2_1977_11_3_a4,
author = {V. N. Temlyakov},
title = {Asymptotic behavior of best approximations of continuous functions},
journal = {Izvestiya. Mathematics },
pages = {551--569},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a4/}
}
V. N. Temlyakov. Asymptotic behavior of best approximations of continuous functions. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 551-569. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a4/