On the behavior at infinity of the fundamental group of a~homologically trivial manifold
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 529-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author finds necessary and sufficient conditions for a group spectrum $G_1\leftarrow G_2\leftarrow\cdots$ to be isomorphic to a fundamental group spectrum of the end of a homologically trivial manifold. Bibliography: 4 titles.
@article{IM2_1977_11_3_a3,
     author = {A. Z. Dymov},
     title = {On the behavior at infinity of the fundamental group of a~homologically trivial manifold},
     journal = {Izvestiya. Mathematics },
     pages = {529--550},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a3/}
}
TY  - JOUR
AU  - A. Z. Dymov
TI  - On the behavior at infinity of the fundamental group of a~homologically trivial manifold
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 529
EP  - 550
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a3/
LA  - en
ID  - IM2_1977_11_3_a3
ER  - 
%0 Journal Article
%A A. Z. Dymov
%T On the behavior at infinity of the fundamental group of a~homologically trivial manifold
%J Izvestiya. Mathematics 
%D 1977
%P 529-550
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a3/
%G en
%F IM2_1977_11_3_a3
A. Z. Dymov. On the behavior at infinity of the fundamental group of a~homologically trivial manifold. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 529-550. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a3/

[1] Hopf H., “Fundamental gruppe und zweit Bettische Gruppe”, Comment. Math. Helv., 14 (1941), 257–309 | DOI | MR

[2] Kervaire M., “Smooth homology spheres and their fundamental groups”, Trans. Amer. Math. Soc., 144 (1969), 67–72 | DOI | MR | Zbl

[3] Kervaire M., Milnor J., “Groups of homotopy spheres”, Ann. Math., 77:3 (1963), 504–537 | DOI | MR | Zbl

[4] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR