Locally polynomial rings and symmetric algebras
Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 472-484

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that every finitely generated locally polynomial algebra over a ring having only a finite number of minimal prime ideals is isomorphic to the symmetric algebra of a finitely generated projective module. We also obtain some other results on the structure of locally polynomial algebras. Bibliography: 6 titles.
@article{IM2_1977_11_3_a1,
     author = {A. A. Suslin},
     title = {Locally polynomial rings and symmetric algebras},
     journal = {Izvestiya. Mathematics },
     pages = {472--484},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a1/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - Locally polynomial rings and symmetric algebras
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 472
EP  - 484
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a1/
LA  - en
ID  - IM2_1977_11_3_a1
ER  - 
%0 Journal Article
%A A. A. Suslin
%T Locally polynomial rings and symmetric algebras
%J Izvestiya. Mathematics 
%D 1977
%P 472-484
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a1/
%G en
%F IM2_1977_11_3_a1
A. A. Suslin. Locally polynomial rings and symmetric algebras. Izvestiya. Mathematics , Tome 11 (1977) no. 3, pp. 472-484. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a1/