Locally polynomial rings and symmetric algebras
Izvestiya. Mathematics, Tome 11 (1977) no. 3, pp. 472-484
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove that every finitely generated locally polynomial algebra over a ring having only a finite number of minimal prime ideals is isomorphic to the symmetric algebra of a finitely generated projective module. We also obtain some other results on the structure of locally polynomial algebras. Bibliography: 6 titles.
@article{IM2_1977_11_3_a1,
author = {A. A. Suslin},
title = {Locally polynomial rings and symmetric algebras},
journal = {Izvestiya. Mathematics},
pages = {472--484},
year = {1977},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a1/}
}
A. A. Suslin. Locally polynomial rings and symmetric algebras. Izvestiya. Mathematics, Tome 11 (1977) no. 3, pp. 472-484. http://geodesic.mathdoc.fr/item/IM2_1977_11_3_a1/
[1] Abhyankar S., Eakin P., Heinzer W., “On the uniqueness of the coefficient ring in a polynomial ring”, Journal of Algebra, 23:2 (1972), 310–342 | DOI | MR | Zbl
[2] Burbaki N., Algebra. Lineinaya i polilineinaya algebra, Fizmatgiz, M., 1962
[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[4] Eakin P., Heinzer W., “A cancellation problem for rings”, Lect. Notes Math., 311, 1972, 61–77 | MR
[5] Eakin P., Silver J., “Rings which are almost polynomial rings”, Trans. Amer. Math. Soc., 174 (1972), 425–449 | DOI | MR
[6] Quillen D., “Projektive modules over polynomial rings”, Invent. Math., 36 (1976), 167–171 | DOI | MR | Zbl