On a~class of biorthogonal expansions in exponential functions
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 375-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a biorthogonal expansion in terms of the system $\{e^{\lambda_nx}\}$, where $\lambda_n$ are the zeros of the entire function $$ L(z)=h_0e^z+\int_0^1e^{zt}k(t)\,dt,\qquad h_0\ne0, $$ and $k^{(m)}(t)$ has bounded variation for some integer $m\geqslant0$, $k^{(j)}(0)=0$ for $j=0,1,\dots,m-1$ and $k^{(m)}(0+0)\ne0$. The function to be expanded has domain $(0,1)$. We describe the sets of convergence (and divergence) of the series for the classes $L^p$, $C$, $\operatorname{Lip}\alpha$, and $V$. The results indicate that the series have properties different from those of ordinary Fourier series; and the difference becomes more pronounced as $m$ increases. Bibliography: 16 titles.
@article{IM2_1977_11_2_a9,
     author = {A. M. Sedletskii},
     title = {On a~class of biorthogonal expansions in exponential functions},
     journal = {Izvestiya. Mathematics },
     pages = {375--395},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - On a~class of biorthogonal expansions in exponential functions
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 375
EP  - 395
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/
LA  - en
ID  - IM2_1977_11_2_a9
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T On a~class of biorthogonal expansions in exponential functions
%J Izvestiya. Mathematics 
%D 1977
%P 375-395
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/
%G en
%F IM2_1977_11_2_a9
A. M. Sedletskii. On a~class of biorthogonal expansions in exponential functions. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 375-395. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/

[1] Schwartz L., Etudes des sommes d'exponentielles reelles, Paris, 1943

[2] Leontev A. F., “O svoistvakh posledovatelnostei polinomov Dirikhle, skhodyaschikhsya na intervale mnimoi osi”, Izv. AN SSSR. Ser. matem., 29 (1965), 269–328 | MR

[3] Sedletskii A. M., “O funktsiyakh, periodicheskikh v srednem”, Izv. AN SSSR. Ser. matem., 34 (1970), 1391–1415

[4] Molodenkov V. A., Khromov A. P., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi dlya operatora differentsirovaniya”, Differentsialnye uravneniya i vychislitelnaya matematika, 1, Saratov, 1972, 17–26 | MR | Zbl

[5] Sedletskii A. M., “Periodicheskoe v srednem prodolzhenie i bazisy pokazatelnykh funktsii v $L^p(-\pi,\pi)$”, Matem. zametki, 12:1 (1972), 37–42 | MR

[6] Sedletskii A. M., “Periodicheskoe v srednem prodolzhenie nepreryvnykh funktsii s sokhraneniem gladkosti”, Dokl. AN SSSR, 212:2 (1973), 302–304

[7] Lyubich Yu. I., “Ob odnom klasse integralnykh uravnenii”, Matem. sb., 38(80):2 (1956), 183–202 | Zbl

[8] Verblunsky S., “On a class of integral functions”, Quart. J. Math., 8:32 (1957), 312–320 | DOI | MR | Zbl

[9] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[10] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[11] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[12] Duren P. L., Theory of $H^p$ spaces, New York, 1970 | MR

[13] Makai E., “On the summability of the Fourier series of $L^2$ integrable functions, IV”, Acta Math. Acad. Sci. Hung., 20:3,4 (1969), 383–391 | DOI | MR | Zbl

[14] Shilovskaya O. K., “Razlozhenie po sobstvennym funktsiyam differentsialnogo operatora vtorogo poryadka v sluchae neregulyarnykh kraevykh uslovii”, Issledovaniya po differentsialnym uravneniyam i teorii funktsii, Saratov, 1973, 58–74 | Zbl

[15] Zigmund A., Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR

[16] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956