On a~class of biorthogonal expansions in exponential functions
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 375-395

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a biorthogonal expansion in terms of the system $\{e^{\lambda_nx}\}$, where $\lambda_n$ are the zeros of the entire function $$ L(z)=h_0e^z+\int_0^1e^{zt}k(t)\,dt,\qquad h_0\ne0, $$ and $k^{(m)}(t)$ has bounded variation for some integer $m\geqslant0$, $k^{(j)}(0)=0$ for $j=0,1,\dots,m-1$ and $k^{(m)}(0+0)\ne0$. The function to be expanded has domain $(0,1)$. We describe the sets of convergence (and divergence) of the series for the classes $L^p$, $C$, $\operatorname{Lip}\alpha$, and $V$. The results indicate that the series have properties different from those of ordinary Fourier series; and the difference becomes more pronounced as $m$ increases. Bibliography: 16 titles.
@article{IM2_1977_11_2_a9,
     author = {A. M. Sedletskii},
     title = {On a~class of biorthogonal expansions in exponential functions},
     journal = {Izvestiya. Mathematics },
     pages = {375--395},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - On a~class of biorthogonal expansions in exponential functions
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 375
EP  - 395
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/
LA  - en
ID  - IM2_1977_11_2_a9
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T On a~class of biorthogonal expansions in exponential functions
%J Izvestiya. Mathematics 
%D 1977
%P 375-395
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/
%G en
%F IM2_1977_11_2_a9
A. M. Sedletskii. On a~class of biorthogonal expansions in exponential functions. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 375-395. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/