On a~class of biorthogonal expansions in exponential functions
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 375-395
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a biorthogonal expansion in terms of the system $\{e^{\lambda_nx}\}$, where $\lambda_n$ are the zeros of the entire function
$$
L(z)=h_0e^z+\int_0^1e^{zt}k(t)\,dt,\qquad h_0\ne0,
$$
and $k^{(m)}(t)$ has bounded variation for some integer $m\geqslant0$, $k^{(j)}(0)=0$ for $j=0,1,\dots,m-1$ and $k^{(m)}(0+0)\ne0$. The function to be expanded has domain $(0,1)$. We describe the sets of convergence (and divergence) of the series for the classes $L^p$, $C$, $\operatorname{Lip}\alpha$, and $V$. The results indicate that the series have properties different from those of ordinary Fourier series; and the difference becomes more pronounced as $m$ increases.
Bibliography: 16 titles.
@article{IM2_1977_11_2_a9,
author = {A. M. Sedletskii},
title = {On a~class of biorthogonal expansions in exponential functions},
journal = {Izvestiya. Mathematics },
pages = {375--395},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/}
}
A. M. Sedletskii. On a~class of biorthogonal expansions in exponential functions. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 375-395. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a9/