Equations of convolution type in spaces of analytic functionals
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 361-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work necessary and sufficient conditions are obtained for solvability of the equation $\Phi^*f=g$, where $\Phi^*$ is the adjoint of the operator of multiplication by an entire function of normal type with a finite order of growth. As an application some conditions are found for solvability of a nonhomogeneous equation of generalized convolution type. Bibliography: 16 titles.
@article{IM2_1977_11_2_a8,
     author = {V. A. Tkachenko},
     title = {Equations of convolution type in spaces of analytic functionals},
     journal = {Izvestiya. Mathematics },
     pages = {361--374},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a8/}
}
TY  - JOUR
AU  - V. A. Tkachenko
TI  - Equations of convolution type in spaces of analytic functionals
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 361
EP  - 374
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a8/
LA  - en
ID  - IM2_1977_11_2_a8
ER  - 
%0 Journal Article
%A V. A. Tkachenko
%T Equations of convolution type in spaces of analytic functionals
%J Izvestiya. Mathematics 
%D 1977
%P 361-374
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a8/
%G en
%F IM2_1977_11_2_a8
V. A. Tkachenko. Equations of convolution type in spaces of analytic functionals. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 361-374. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a8/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[2] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[3] Sebastiao J. e Silva, “Su certe classi di spazi localmente convessi importanti per le applicazioni”, Rendic. di Matem. e Delle Sue Appl., Roma, 14(5) (1955) ; Математика, 1:1 (1957), 60–77 | MR

[4] Azarin V. S., “Ob odnom kharakteristicheskom svoistve funktsii vpolne regulyarnogo rosta vnutri ugla”, Teoriya funktsii, funkts. analiz i ikh prilozh., 2 (1966), 55–66 | MR | Zbl

[5] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[6] Gelfond A. O., “Lineinye differentsialnye uravneniya s postoyannymi koeffitsientami beskonechnogo poryadka i asimptoticheskie periody tselykh funktsii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 38, 1951, 42–67 | MR

[7] Leontev A. F., Ryady polinomov Dirikhle i ikh obobscheniya, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 39, 1951 | MR | Zbl

[8] Korobeinik Yu. F., “O resheniyakh differentsialnogo uravneniya beskonechnogo poryadka, analiticheskikh v nekrugovykh oblastyakh”, Matem. sborn., 71(113):4 (1966), 535–544 | MR | Zbl

[9] Korobeinik Yu. F., “Ob odnom funktsionalnom uravnenii”, Matem. zametki, 5:6 (1969), 733–742 | MR | Zbl

[10] Korobeinik Yu. F., “Suschestvovanie analiticheskogo resheniya differentsialnogo uravneniya beskonechnogo poryadka i kharakter ego oblasti analitichnosti”, Matem. sb., 80:1 (1969), 52–76 | MR | Zbl

[11] Korobeinik Yu. F., “Ob analiticheskikh resheniyakh integralnogo uravneniya s yadrom, zavisyaschim ot raznosti argumentov”, Matem. analiz i ego prilozheniya, III (1971), 3–19 | MR

[12] Napalkov V. V., “Ob odnom klasse neodnorodnykh uravnenii tipa svertki”, Uspekhi matem. nauk, XXIX:3(177) (1974), 217–218 | MR

[13] Epifanov O. V., “Ob epimorfizme svertki v vypuklykh oblastyakh”, Dokl. AN SSSR, 217:1 (1974), 18–19 | MR | Zbl

[14] Epifanov O. V., “K voprosu ob epimorfnosti operatora svertki v vypuklykh oblastyakh”, Matem. zametki, 16:3 (1974), 415–422 | MR | Zbl

[15] Tkachenko V. A., “Ob operatorakh tipa svertki v prostranstvakh analiticheskikh funktsionalov”, Dokl. AN SSSR, 219:3 (1974), 555–557 | Zbl

[16] Epifanov O. V., Lenëv A. A., “O razreshimosti odnogo integralnogo uravneniya v prostranstvakh analiticheskikh funktsii”, Matem. analiz i ego prilozheniya, 6 (1974), 258–261 | MR | Zbl