A~peak set for the disc algebra of metric dimension~2.5 in the three-dimensional unit sphere
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 353-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a peak set of metric dimension 2.5 is constructed for the algebra of uniformly continuous holomorphic functions on a strictly pseudoconvex domain $D\subset\mathbf C^2$ with real analytic boundary. Bibliography: 8 titles.
@article{IM2_1977_11_2_a7,
     author = {A. E. Tumanov},
     title = {A~peak set for the disc algebra of metric dimension~2.5 in the three-dimensional unit sphere},
     journal = {Izvestiya. Mathematics },
     pages = {353--359},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a7/}
}
TY  - JOUR
AU  - A. E. Tumanov
TI  - A~peak set for the disc algebra of metric dimension~2.5 in the three-dimensional unit sphere
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 353
EP  - 359
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a7/
LA  - en
ID  - IM2_1977_11_2_a7
ER  - 
%0 Journal Article
%A A. E. Tumanov
%T A~peak set for the disc algebra of metric dimension~2.5 in the three-dimensional unit sphere
%J Izvestiya. Mathematics 
%D 1977
%P 353-359
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a7/
%G en
%F IM2_1977_11_2_a7
A. E. Tumanov. A~peak set for the disc algebra of metric dimension~2.5 in the three-dimensional unit sphere. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 353-359. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a7/

[1] Valskii R. E., “O merakh, ortogonalnykh analiticheskim funktsiyam v $\mathbf{C}^n$”, Dokl. AN SSSR, 198:3 (1971), 502–505 | MR

[2] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[3] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[4] Pinchuk S. I., “Granichnaya teorema edinstvennosti dlya golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Matem. zametki, 15:2 (1974), 205–212 | Zbl

[5] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[6] Tumanov A. E., Khenkin G. M., “Interpolyatsionnye podmnogoobraziya psevdovypuklykh mnogoobrazii”, Trudy sedmoi shkoly po lineinomu programmirovaniyu i smezhnym voprosam v g. Drogobyche, 1974

[7] Davie A. M., Oksendal B. K., “Peak interpolation sets for some algebras of analytic functions”, Pacif. J. Math., 41:1 (1972), 81–87 | MR

[8] Wegmann H., “Die Hausdorfdimension von kartesischen Produktmengen”, J. Reine und Angew. Math., 234 (1969), 163–171 | MR | Zbl