Dense orbits with two ends
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 293-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper almost transitive actions of linear algebraic groups $G$ are studied on complete normal manifolds $X$ defined over the field of complex numbers. Such actions are completely described in cases when the complement in $X$ of an open orbit is disconnected or contains an isolated point. As a preliminary, all homogeneous spaces of $G$ having two Freudenthal ends are found. Bibliography: 16 titles.
@article{IM2_1977_11_2_a3,
     author = {D. N. Akhiezer},
     title = {Dense orbits with two ends},
     journal = {Izvestiya. Mathematics },
     pages = {293--307},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a3/}
}
TY  - JOUR
AU  - D. N. Akhiezer
TI  - Dense orbits with two ends
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 293
EP  - 307
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a3/
LA  - en
ID  - IM2_1977_11_2_a3
ER  - 
%0 Journal Article
%A D. N. Akhiezer
%T Dense orbits with two ends
%J Izvestiya. Mathematics 
%D 1977
%P 293-307
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a3/
%G en
%F IM2_1977_11_2_a3
D. N. Akhiezer. Dense orbits with two ends. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 293-307. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a3/

[1] Freudenthal H., “Über die Enden topologischer Räume und Gruppen”, Math. Zeit, 33:5 (1931), 692–713 | DOI | MR | Zbl

[2] Borel A., “Les bouts des espaces homogènes de groupes de Lie”, Ann. Math., 58:3 (1953), 443–457 | DOI | MR | Zbl

[3] Oeljeklaus E., “Ein Hebbarkeitssatz für Automorphismengruppen kompakter komplexer Mannigfaltigkeiten”, Math. Annalen, 190:2 (1970), 154–166 | DOI | MR | Zbl

[4] Oeljeklaus E., Barth W., “Über die Albanese-Abbildung einer fasthomogenen Kahler–Mannigfaltigkeit”, Math. Annalen, 211:1 (1974), 47–62 | DOI | MR | Zbl

[5] Popov V. L., “Klassifikatsiya trekhmernykh affinnykh algebraicheskikh mnogoobrazii, kvaziodnorodnykh otnositelno algebraicheskoi gruppy”, Izv. AN SSSR. Ser. matem., 39 (1975), 566–609 | MR | Zbl

[6] Mostow G. D., “On covariant fiberings of Klein Spaces, I, II”, Amer. J. Math., 77:2 (1955), 247–278 ; 84:3 (1962), 466–474 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Karpelevich F. I., “O rassloenii odnorodnykh prostranstv”, Uspekhi matem. nauk, 11:3 (1956), 131–138 | MR | Zbl

[8] Karpelevich F. I., “O nepoluprostykh maksimalnykh podalgebrakh poluprostykh algebr Li”, Dokl. AN SSSR, 76:6 (1951), 775–778 | Zbl

[9] Serre J.-P., “Géométrie algébrique et géométrie analytique”, Ann. Inst. Fourier, Grenoble, 6 (1955–1956), 1–42 | MR

[10] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 749–764 | MR | Zbl

[11] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[12] Kempf G., Knudsen F., Mumford D., Saint-Donat B., “Toroidal Embeddings, I”, Lecture Notes in Math., 339, Springer, 1973 | MR | Zbl

[13] Mumford D., Geometric Invariant Theory, Springer, Berlin, 1965 ; Mir, M., 1974 | MR | Zbl | Zbl

[14] Borel A., “Kählerian coset spaces of semi-simple Lie groups”, Proc. Nat. Acad. Sci. USA, 40 (1954), 1147–1151 | DOI | MR | Zbl

[15] Bott R., “Homogeneous vector bundles”, Ann. Math., 66:2 (1957), 203–248 | DOI | MR | Zbl

[16] Grauert H., “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368 ; Kompleksnye prostranstva, Mir, M., 1965 | DOI | MR | MR