On Lie groups, transitive on compact solvmanifolds
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 271-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lie groups which are transitive on compact homogeneous spaces of type $K(\pi,1)$ with solvable $\pi$ are studied (these spaces turn out to be homeomorphic to solvmanifolds-homogeneous spaces of solvable Lie groups). Transitive actions of Lie groups on nilmanifolds (homogeneous spaces of nilpotent Lie groups), in particular on the torus $T^n$, are studied in more detail. Bibliography: 15 titles.
@article{IM2_1977_11_2_a2,
     author = {V. V. Gorbatsevich},
     title = {On {Lie} groups, transitive on compact solvmanifolds},
     journal = {Izvestiya. Mathematics },
     pages = {271--292},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On Lie groups, transitive on compact solvmanifolds
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 271
EP  - 292
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a2/
LA  - en
ID  - IM2_1977_11_2_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On Lie groups, transitive on compact solvmanifolds
%J Izvestiya. Mathematics 
%D 1977
%P 271-292
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a2/
%G en
%F IM2_1977_11_2_a2
V. V. Gorbatsevich. On Lie groups, transitive on compact solvmanifolds. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 271-292. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a2/

[1] Akhiezer D. N., “Kompaktnye kompleksnye odnorodnye prostranstva s razreshimoi fundamentalnoi gruppoi”, Izv. AN SSSR. Ser. matem., 38 (1974), 59–80 | Zbl

[2] Auslender L., Grin L., Khan F., Potoki na odnorodnykh prostranstvakh, Mir, M., 1966 | MR

[3] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. of AMS, 79:2 (1973), 227–261 | DOI | MR | Zbl

[4] Borel A., “Density properties for certain subgroups of semisimple groups without compact components”, Ann. Math., 72:1 (1960), 179–188 | DOI | MR | Zbl

[5] Gorbatsevich V. V., “Reshetki v razreshimykh gruppakh Li i deformatsii odnorodnykh prostranstv”, Matem. sb., 91(133):2 (1973), 234–252 | Zbl

[6] Gorbatsevich V. V., “O klassifikatsii odnorodnykh prostranstv”, Dokl. AN SSSR, 216:5 (1974), 968–971

[7] Gorbatsevich V. V., “Ob asferichnykh odnorodnykh prostranstvakh”, Matem. sb., 100(142):2 (1976), 248–265 | MR | Zbl

[8] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[9] Johnson W., “Presentation of solvmanifolds”, Amer. J. Math., 94:1 (1972), 82–102 | DOI | MR | Zbl

[10] Mostow D., “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. Math., 52:3 (1950), 606–636 | DOI | MR | Zbl

[11] Mostow D., “Factor spaces of solvable groups”, Ann. Math., 60:1 (1954), 1–27 | DOI | MR | Zbl

[12] Onischik A. L., “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh, II”, Matem. sb., 74(116):3 (1967), 398–416 | Zbl

[13] Wall C. T. C., “The topological space-form problems”, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, 319–331 | MR

[14] Wang H.-C., “Discrete subgroups of solvable Lie groups”, Ann. Math., 64:1 (1956), 1–19 | DOI | MR | Zbl

[15] Wang H.-C., “On the deformation of lattice in a Lie group”, Amer. J. Math., 85:2 (1963), 189–212 | DOI | MR | Zbl