A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 397-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for the equation $$ \frac d{dx_k}a_k(x,u)+b(x,u)+cu=0 $$ is posed and investigated in a domain $\Omega\subset\mathbf R^n$ with boundary $S$. Let $a_\nu$ be the normal component on $S$ of the vector $\vec a=(a_1,\dots,a_n)$. In contrast to previous papers, an arbitrary dependence of $a_\nu(x,u)$ on $u$ is permitted. Bibliography: 7 titles.
@article{IM2_1977_11_2_a10,
     author = {\'E. B. Bykhovskii},
     title = {A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function},
     journal = {Izvestiya. Mathematics },
     pages = {397--416},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/}
}
TY  - JOUR
AU  - É. B. Bykhovskii
TI  - A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 397
EP  - 416
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/
LA  - en
ID  - IM2_1977_11_2_a10
ER  - 
%0 Journal Article
%A É. B. Bykhovskii
%T A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function
%J Izvestiya. Mathematics 
%D 1977
%P 397-416
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/
%G en
%F IM2_1977_11_2_a10
É. B. Bykhovskii. A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 397-416. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/

[1] Bykhovskii E. B., “Kraevaya i nachalno-kraevaya zadachi “v tselom” dlya kvazilineinogo zakona sokhraneniya”, Dokl. AN SSSR, 215:1 (1974), 17–20

[2] Bykhovskii E. B., “Globalnaya kraevaya zadacha dlya kvazilineinogo differentsialnogo uravneniya pervogo poryadka”, Izvestiya AN SSSR. Seriya matem., 38 (1974), 1408–1456

[3] Bykhovskii E. B., “Povedenie reshenii kraevoi zadachi dlya ellipticheskogo uravneniya s malym parametrom pri starshikh proizvodnykh na mnogoobrazii tochek vstrechi kharakteristik vyrozhdennogo uravneniya”, Vestnik Leningr. un-ta, 1975, no. 13, 7–13

[4] Bykhovskii E. B., “Otsenki proizvodnykh resheniya ellipticheskoi kraevoi zadachi s malym parametrom pri starshikh proizvodnykh”, Vestnik Leningr. un-ta, 1977, no. 1

[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[6] Volpert A. I., “Prostranstva $BV$ i kvazilineinye uravneniya”, Matem. sb., 73(115):2 (1967), 255–302 | MR

[7] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5(77) (1957), 3–120 | MR