A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 397-416
Voir la notice de l'article provenant de la source Math-Net.Ru
A boundary value problem for the equation
$$
\frac d{dx_k}a_k(x,u)+b(x,u)+cu=0
$$
is posed and investigated in a domain $\Omega\subset\mathbf R^n$ with boundary $S$. Let $a_\nu$ be the normal component on $S$ of the vector
$\vec a=(a_1,\dots,a_n)$. In contrast to previous papers, an arbitrary dependence of $a_\nu(x,u)$ on $u$ is permitted.
Bibliography: 7 titles.
@article{IM2_1977_11_2_a10,
author = {\'E. B. Bykhovskii},
title = {A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function},
journal = {Izvestiya. Mathematics },
pages = {397--416},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/}
}
TY - JOUR AU - É. B. Bykhovskii TI - A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function JO - Izvestiya. Mathematics PY - 1977 SP - 397 EP - 416 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/ LA - en ID - IM2_1977_11_2_a10 ER -
%0 Journal Article %A É. B. Bykhovskii %T A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function %J Izvestiya. Mathematics %D 1977 %P 397-416 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/ %G en %F IM2_1977_11_2_a10
É. B. Bykhovskii. A~boundary value problem for a~quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 397-416. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a10/