A~theorem on projections of rearranged series with terms in~$L_p$
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 193-204

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved in this paper: if a series $\sum_{k=1}^\infty f_k$ with terms in $L_p$ ($1\leqslant p\infty$) satisfies either the condition $\sum_{k=1}^\infty\|f_k\|^2\infty$ when $2\leqslant p\infty$ or the condition $\sqrt{\sum_{k=1}^\infty f_k^2(x)}\in L_p$ when $1\leqslant p2$, then in order that there exist a permutation of the natural numbers $\{n_1,\dots,n_k,\dots\}$ such that $\sum_{k=1}^\infty f_{n_k}=f$ in the $L_p$ norm, it is necessary and sufficient that for each linear functional $F\in L_p^*$, $\|F\|=1$, there exists a permutation $\{m_1,\dots,m_k,\dots\}$ depending on $F$ such that $\sum_{k=1}^\infty F(f_{m_k})=F(f)$. Bibliography: 9 titles.
@article{IM2_1977_11_1_a6,
     author = {D. V. Pecherskii},
     title = {A~theorem on projections of rearranged series with terms in~$L_p$},
     journal = {Izvestiya. Mathematics },
     pages = {193--204},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a6/}
}
TY  - JOUR
AU  - D. V. Pecherskii
TI  - A~theorem on projections of rearranged series with terms in~$L_p$
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 193
EP  - 204
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a6/
LA  - en
ID  - IM2_1977_11_1_a6
ER  - 
%0 Journal Article
%A D. V. Pecherskii
%T A~theorem on projections of rearranged series with terms in~$L_p$
%J Izvestiya. Mathematics 
%D 1977
%P 193-204
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a6/
%G en
%F IM2_1977_11_1_a6
D. V. Pecherskii. A~theorem on projections of rearranged series with terms in~$L_p$. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 193-204. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a6/