Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 171-192
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be a Lebesgue measurable subset of a $k$-dimensional cube ($k\geqslant1$), let $f\in L_p[E]$, where $0$, and let $R_n[f,p,E]$ be the least deviation of $f$, in the metric of $L_p[E]$, from the rational functions of degre $\leqslant n$. If $R_n[f,p,E]=O(n^{-\lambda})$, then, for $0\mu\lambda$, $f$ has a local differential of order $\mu$ in the $L_p$-metric at each point $\xi\in E$, except perhaps points $\xi$ of some set of metric dimension $\leqslant k-1+(p\mu+1)/(p\lambda+1)$ (this inequality is sharp). In addition, $f$ has a global differential of order $\mu$ in the metric of $L_q [E]$ for any $q$.
Bibliography: 15 titles.
@article{IM2_1977_11_1_a5,
author = {E. P. Dolzhenko and V. I. Danchenko},
title = {Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions},
journal = {Izvestiya. Mathematics },
pages = {171--192},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/}
}
TY - JOUR AU - E. P. Dolzhenko AU - V. I. Danchenko TI - Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions JO - Izvestiya. Mathematics PY - 1977 SP - 171 EP - 192 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/ LA - en ID - IM2_1977_11_1_a5 ER -
%0 Journal Article %A E. P. Dolzhenko %A V. I. Danchenko %T Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions %J Izvestiya. Mathematics %D 1977 %P 171-192 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/ %G en %F IM2_1977_11_1_a5
E. P. Dolzhenko; V. I. Danchenko. Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 171-192. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/