Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 171-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a Lebesgue measurable subset of a $k$-dimensional cube ($k\geqslant1$), let $f\in L_p[E]$, where $0$, and let $R_n[f,p,E]$ be the least deviation of $f$, in the metric of $L_p[E]$, from the rational functions of degre $\leqslant n$. If $R_n[f,p,E]=O(n^{-\lambda})$, then, for $0\mu\lambda$, $f$ has a local differential of order $\mu$ in the $L_p$-metric at each point $\xi\in E$, except perhaps points $\xi$ of some set of metric dimension $\leqslant k-1+(p\mu+1)/(p\lambda+1)$ (this inequality is sharp). In addition, $f$ has a global differential of order $\mu$ in the metric of $L_q [E]$ for any $q$. Bibliography: 15 titles.
@article{IM2_1977_11_1_a5,
     author = {E. P. Dolzhenko and V. I. Danchenko},
     title = {Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions},
     journal = {Izvestiya. Mathematics },
     pages = {171--192},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - V. I. Danchenko
TI  - Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 171
EP  - 192
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/
LA  - en
ID  - IM2_1977_11_1_a5
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A V. I. Danchenko
%T Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions
%J Izvestiya. Mathematics 
%D 1977
%P 171-192
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/
%G en
%F IM2_1977_11_1_a5
E. P. Dolzhenko; V. I. Danchenko. Dependence of the differentiability of functions of several variables on their rate of approximation by rational functions. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 171-192. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a5/

[1] Dolzhenko E. P., “Otsenki proizvodnykh ratsionalnykh funktsii”, Izv. AN SSSR. Ser. matem., 27 (1963), 9–28

[2] Dolzhenko E. P., “Nekotorye metricheskie svoistva algebraicheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 27 (1963), 241–252

[3] Nevanlinna R., Odnoznachnye analiticheskie funktsii, Gostekhizdat, M., L., 1941 | MR

[4] Sevastyanov E. A., “Nekotorye otsenki proizvodnykh ratsionalnykh funktsii v integralnykh metrikakh”, Matem. zametki, 13:4 (1973), 499–510

[5] Dolzhenko E. P., “O svoistvakh funktsii neskolkikh peremennykh, dostatochno khorosho priblizhaemykh ratsionalnymi drobyami”, Izv. AN SSSR. Ser. matem., 26 (1962), 641–652 | Zbl

[6] Gonchar A. A., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, Dokl. AN SSSR, 100:2 (1955), 205–208 | Zbl

[7] Gonchar A. A., “Obratnye teoremy o nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 25 (1961), 347–356 | Zbl

[8] Dolzhenko E. P., Sevastyanov E. A., “Priblizheniya ratsionalnymi funktsiyami v integralnykh metrikakh i differentsiruemost v srednem”, Matem. zametki, 16:5 (1974), 801–811 | Zbl

[9] Dolzhenko E. P., “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56:4 (1962), 403–432 | Zbl

[10] Севастьянов Е. А. “O zavisimosti differentsialnykh svoistv funktsii ot skorosti ee ratsionalnykh priblizhenii v metrikakh $L_p$”, Matem. zametki, 15:1 (1974), 79–90 | MR | Zbl

[11] Newman D., “Rational approximation to $|x|$”, Michigan Math. J., 11:1 (1964), 11–14 | DOI | MR | Zbl

[12] Bulanov A. P., “Asimptotika dlya naimenshikh uklonenii funktsii $\operatorname{sign}x$ ot ratsionalnykh funktsii”, Matem. sb., 96:2 (1975), 171–188 | MR | Zbl

[13] Gonchar A. A., “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Tr. Mezhdunarodnogo kongressa matematikov, Mir, Moskva, 1966, 329–356

[14] Macintyre A. J., Fuchs W. H. J., “Iniqualites for the logarithmic derivatives of a polynomial”, J. London Math. Soc., 15:1 (1940), 162–168 | DOI | MR | Zbl

[15] Dolzhenko E. P., “O svyazi mezhdu svoistvami funktsii i skorostyu ikh priblizheniya ratsionalnymi funktsiyami so svobodnymi polyusami i polinomami”, Problemy razvitiya prikladnykh matematicheskikh issledovanii, Tezisy dokladov, ch. 2 (IV respublikanskaya konferentsiya matematikov Belorussii), BGU, Minsk, 1975, 119–120