An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 147-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Two ergodic automorphisms of a Lebesgue space are called monotonely equivalent if they have metrically isomorphic induced automorphisms. We formulate properties of an automorphism of a Lebesgue space, similar to very weak Bernoulli and finitely determined. The difference is that instead of the Hamming metric on the space of words, we use a weaker metric $\rho^M$. These properties describe the class of quotient automorphisms of automorphisms monotonely equivalent to Bernoulli shifts. Bibliography: 12 titles.
@article{IM2_1977_11_1_a4,
     author = {E. A. Sataev},
     title = {An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to {a~Bernoulli} shift},
     journal = {Izvestiya. Mathematics },
     pages = {147--169},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 147
EP  - 169
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/
LA  - en
ID  - IM2_1977_11_1_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift
%J Izvestiya. Mathematics 
%D 1977
%P 147-169
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/
%G en
%F IM2_1977_11_1_a4
E. A. Sataev. An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 147-169. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/