An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 147-169
Voir la notice de l'article provenant de la source Math-Net.Ru
Two ergodic automorphisms of a Lebesgue space are called monotonely equivalent if they have metrically isomorphic induced automorphisms. We formulate properties of an automorphism of a Lebesgue space, similar to very weak Bernoulli and finitely determined. The difference is that instead of the Hamming metric on the space of words, we use a weaker metric $\rho^M$. These properties describe the class of quotient automorphisms of automorphisms monotonely equivalent to Bernoulli shifts.
Bibliography: 12 titles.
@article{IM2_1977_11_1_a4,
author = {E. A. Sataev},
title = {An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to {a~Bernoulli} shift},
journal = {Izvestiya. Mathematics },
pages = {147--169},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/}
}
TY - JOUR AU - E. A. Sataev TI - An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift JO - Izvestiya. Mathematics PY - 1977 SP - 147 EP - 169 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/ LA - en ID - IM2_1977_11_1_a4 ER -
%0 Journal Article %A E. A. Sataev %T An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift %J Izvestiya. Mathematics %D 1977 %P 147-169 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/ %G en %F IM2_1977_11_1_a4
E. A. Sataev. An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 147-169. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/