An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 147-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two ergodic automorphisms of a Lebesgue space are called monotonely equivalent if they have metrically isomorphic induced automorphisms. We formulate properties of an automorphism of a Lebesgue space, similar to very weak Bernoulli and finitely determined. The difference is that instead of the Hamming metric on the space of words, we use a weaker metric $\rho^M$. These properties describe the class of quotient automorphisms of automorphisms monotonely equivalent to Bernoulli shifts. Bibliography: 12 titles.
@article{IM2_1977_11_1_a4,
     author = {E. A. Sataev},
     title = {An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to {a~Bernoulli} shift},
     journal = {Izvestiya. Mathematics },
     pages = {147--169},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 147
EP  - 169
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/
LA  - en
ID  - IM2_1977_11_1_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift
%J Izvestiya. Mathematics 
%D 1977
%P 147-169
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/
%G en
%F IM2_1977_11_1_a4
E. A. Sataev. An invariant of monotone equivalence determining the quotients of automorphisms monotonely equivalent to a~Bernoulli shift. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 147-169. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a4/

[1] Katok A. B., “Zamena vremeni, monotonnaya ekvivalentnost i standartnye dinamicheskie sistemy”, Dokl. AN SSSR, 223:4 (1975), 789–792 | MR | Zbl

[2] Salesky A., “On induced transformation of Bernoully shifts”, Math. Syst. Theory, 7:1 (1973), 83–96 | DOI

[3] Ornstein D. S., Ergodic theory, randomness and dinamical systems, Yale Math. Monographs, Yale Univ. Press, 1974 | MR | Zbl

[4] Sinai Ya. G., “Slabyi izomorfizm preobrazovanii s invariantnoi meroi”, Dokl. AN SSSR, 147:2 (1962), 797–800 | MR | Zbl

[5] Ornstein D., “Avtomorfizm Kolmogorova, ne yavlyayuschiisya sdvigom Bernulli”, Matematika, 15:1 (1971), 131–150 | Zbl

[6] Kochergin A. V., “Ob additivnykh gomologicheskikh uravneniyakh nad dinamicheskimi sistemami”, Chetvertyi Mezhdunarodnyi simpozium po teorii informatsii, Tezisy dokladov, ch. I, M., L., 1976

[7] Sataev E. A., “Invariant monotonnoi ekvivalentnosti, opredelyayuschii faktory ot avtomorfizmov, monotonno ekvivalentnykh sdvigu Bernulli”, Chetvertyi Mezhdunarodnyi simpozium po teorii informatsii, Tezisy dokladov, ch. I, M., L., 1976

[8] Khalmosh P., Lektsii po ergodicheskoi teorii, IL, M., 1959

[9] Katok A. B., “Monotonnaya ekvivalentnost v ergodicheskoi teorii”, Izv. AN SSSR. Ser. matem., 41 (1977), 104–157 | MR | Zbl

[10] Ornstein D. S., Weiss A., “Finitely determined implies very weak Bernoully”, Isr. J. Math., 17:1 (1974), 95–104 | DOI | MR

[11] Friedman N. A., Ornstein D. S., “Ergodic Transformations Induce Mixing Transformations”, Adv. Math., 10:1 (1973), 147–163 | DOI | MR | Zbl

[12] Katok A. B., “Svoistva standartnykh dinamicheskikh sistem”, Chetvertyi Mezhdunarodnyi simpozium po teorii informatsii, Tezisy dokladov, ch. I, M., L., 1976