Automorphisms of affine surfaces.~II
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 51-98
Voir la notice de l'article provenant de la source Math-Net.Ru
Affine surfaces $X$ completed by an irreducible rational curve $C$ are studied. The integer $m=(C^2)$ is an invariant of $X$. It is shown that the set of all such surfaces with fixed invariant $m$ is described in terms of orbits of a group action on the space of “tails”; moreover, the automorphism group $\operatorname{Aut}(X)$ is expressed by the stabilizers of the action. Explicit formulas for generators of the group $\operatorname{Aut}(X)$ are given for $m\leqslant5$. In particular, it is shown that in zero characteristic the invariant $m$ uniquely determines the surface $X$; in the general case this is not so.
Bibliography: 11 titles.
@article{IM2_1977_11_1_a2,
author = {M. Kh. Gizatullin and V. I. Danilov},
title = {Automorphisms of affine {surfaces.~II}},
journal = {Izvestiya. Mathematics },
pages = {51--98},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a2/}
}
M. Kh. Gizatullin; V. I. Danilov. Automorphisms of affine surfaces.~II. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 51-98. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a2/