Families of invariant manifolds corresponding to nonzero characteristic exponents
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1261-1305
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem on conditional stability is proved for a family of mappings of class $C^{1+\varepsilon}$, satisfying a condition more general than Ljapunov regularity. Using this theorem, families of invariant manifolds are constructed for a diffeomorphism of a smooth manifold onto a set where at least one Lyapunov characteristic exponent is nonzero. The property of absolute continuity is proved for these families.
Bibliography: 10 titles.
@article{IM2_1976_10_6_a5,
author = {Ya. B. Pesin},
title = {Families of invariant manifolds corresponding to nonzero characteristic exponents},
journal = {Izvestiya. Mathematics },
pages = {1261--1305},
publisher = {mathdoc},
volume = {10},
number = {6},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a5/}
}
Ya. B. Pesin. Families of invariant manifolds corresponding to nonzero characteristic exponents. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1261-1305. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a5/