Effective computability of rational homotopy type
Izvestiya. Mathematics, Tome 10 (1976) no. 6, pp. 1239-1260
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the author proves the effective computability of a certain functor constructed by Quillen from the category of simply connected cell complexes to the category of free differential graded Lie algebras over the field of rational numbers. Bibliography: 6 titles.
@article{IM2_1976_10_6_a4,
author = {A. D. Gavrilov},
title = {Effective computability of rational homotopy type},
journal = {Izvestiya. Mathematics},
pages = {1239--1260},
year = {1976},
volume = {10},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a4/}
}
A. D. Gavrilov. Effective computability of rational homotopy type. Izvestiya. Mathematics, Tome 10 (1976) no. 6, pp. 1239-1260. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a4/
[1] Quillen D., “Rational homotopy theory”, Ann. Math., 90:2 (1969), 205–295 | DOI | MR | Zbl
[2] Quillen D., Homotopical algebra, Lect. Not. in Math., 43, Springer, Berlin, 1967 | MR | Zbl
[3] Adams J. F., “On the cobar construction”, Proc. Nat. Acad. Sci. USA, 42 (1956), 409–419 | DOI | MR
[4] Milnor, “Moore Hopf Algebras”, Ann. Math., 81 (1965), 211–264 | DOI | MR | Zbl
[5] Smith L., Lectures on the Eilenberg–Moore spectral sequence, Lect. Not. Math., 134, 1970 | MR
[6] Sullivan D., “Differential forms and the topology of manifolds”, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), Univ. Tokyo Press, Tokyo, 1975, 37–49 | MR