Effective computability of rational homotopy type
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1239-1260.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author proves the effective computability of a certain functor constructed by Quillen from the category of simply connected cell complexes to the category of free differential graded Lie algebras over the field of rational numbers. Bibliography: 6 titles.
@article{IM2_1976_10_6_a4,
     author = {A. D. Gavrilov},
     title = {Effective computability of rational homotopy type},
     journal = {Izvestiya. Mathematics },
     pages = {1239--1260},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a4/}
}
TY  - JOUR
AU  - A. D. Gavrilov
TI  - Effective computability of rational homotopy type
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1239
EP  - 1260
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a4/
LA  - en
ID  - IM2_1976_10_6_a4
ER  - 
%0 Journal Article
%A A. D. Gavrilov
%T Effective computability of rational homotopy type
%J Izvestiya. Mathematics 
%D 1976
%P 1239-1260
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a4/
%G en
%F IM2_1976_10_6_a4
A. D. Gavrilov. Effective computability of rational homotopy type. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1239-1260. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a4/

[1] Quillen D., “Rational homotopy theory”, Ann. Math., 90:2 (1969), 205–295 | DOI | MR | Zbl

[2] Quillen D., Homotopical algebra, Lect. Not. in Math., 43, Springer, Berlin, 1967 | MR | Zbl

[3] Adams J. F., “On the cobar construction”, Proc. Nat. Acad. Sci. USA, 42 (1956), 409–419 | DOI | MR

[4] Milnor, “Moore Hopf Algebras”, Ann. Math., 81 (1965), 211–264 | DOI | MR | Zbl

[5] Smith L., Lectures on the Eilenberg–Moore spectral sequence, Lect. Not. Math., 134, 1970 | MR

[6] Sullivan D., “Differential forms and the topology of manifolds”, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), Univ. Tokyo Press, Tokyo, 1975, 37–49 | MR