Inseparable morphisms of algebraic surfaces
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1205-1237.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that no regular vector field exists on an algebraic $K3$ surface defined over an algebraically closed field of finite characteristic. Bibliography: 18 titles.
@article{IM2_1976_10_6_a3,
     author = {A. N. Rudakov and I. R. Shafarevich},
     title = {Inseparable morphisms of algebraic surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1205--1237},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/}
}
TY  - JOUR
AU  - A. N. Rudakov
AU  - I. R. Shafarevich
TI  - Inseparable morphisms of algebraic surfaces
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1205
EP  - 1237
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/
LA  - en
ID  - IM2_1976_10_6_a3
ER  - 
%0 Journal Article
%A A. N. Rudakov
%A I. R. Shafarevich
%T Inseparable morphisms of algebraic surfaces
%J Izvestiya. Mathematics 
%D 1976
%P 1205-1237
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/
%G en
%F IM2_1976_10_6_a3
A. N. Rudakov; I. R. Shafarevich. Inseparable morphisms of algebraic surfaces. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1205-1237. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/

[1] Artin M., “Supersingular $K3$ surfaces”, Ann. Scient. Ecole Norm. Sup., 7:4 (1974), 543–567 | MR | Zbl

[2] Bombieri E., Mumford D., Enriques Classification in Char. II, preprint

[3] Bombieri E., Hasemoller D., “Classification and imbeddings of surfaces”, Algebraic Geometry, v. 29 (Proc. Symposia in pure mathematics), Arcata, 1974, 329–420

[4] Dolgachev I. V., “Eilerova kharakteristika algebraicheskikh mnogoobrazii”, Matem. sb., 89:2 (1972), 297–312 | Zbl

[5] Dolgachev I. V., Parshin A. N., “Differenta i diskriminant regulyarnykh otobrazhenii”, Matem. zametki, 4:5 (1968), 519–523

[6] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[7] Grothendieck A., Dieudonne J., “Elements de Geometrie Algebrique. II”, Inst. Hautes Études Sci. Publ. Math., no. 8, 1961

[8] Kiehl R., Kunz E., “Vollständige Durchschnitte and $p$-Basen”, Arch. der Math., XVI:1 (1965), 348–362 | DOI | MR

[9] Kunz E., “Über die kanonische Klasse einer vollständigen Modells eines algebraischen Funktionenkörper”, J. Reine Angew. Math., 209 (1962), 17–28 | MR | Zbl

[10] Nagata N., Local Rings, Interscience Publ., New York, 1962 | MR | Zbl

[11] Neron A., “Modeles minimaux des varietes abeliennes”, Inst. Hautes Études Sci. Publications Math., 1964, no. 21, 1–128 | MR

[12] Ogg A., “Elliptic curves and wild ramification”, Amer. Jour. of Math., 89:1 (1967), 1–21 | DOI | MR | Zbl

[13] Parshin A. N., “Algebraicheskie krivye nad funktsionalnymi polyami”, Izv. AN SSSR. Ser. matem., 32 (1968), 1191–1219 | Zbl

[14] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa $K3$”, Izv. AN SSSR. Ser. matem., 35 (1971), 530–572

[15] Raynand M., “Caracteristique d'Euler–Poincare d'un faisceau et cohomologie des varietes abeliennes”, Dix exposes sur la cohomologie des chemas, North-Holland, Amsterdam, 1968, 12–31

[16] Serre J.-P., Tate J., “Good reduction of abelian varieties”, Ann. Math., 88:2 (1968), 492–517 | DOI | MR | Zbl

[17] Tate J., Delique P., “Courbes elliptiques: formulaire Modular functions of one variable. IV”, Lecture Notes in Math., 476, 53–73

[18] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl