Inseparable morphisms of algebraic surfaces
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1205-1237
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that no regular vector field exists on an algebraic $K3$ surface defined over an algebraically closed field of finite characteristic.
Bibliography: 18 titles.
@article{IM2_1976_10_6_a3,
author = {A. N. Rudakov and I. R. Shafarevich},
title = {Inseparable morphisms of algebraic surfaces},
journal = {Izvestiya. Mathematics },
pages = {1205--1237},
publisher = {mathdoc},
volume = {10},
number = {6},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/}
}
A. N. Rudakov; I. R. Shafarevich. Inseparable morphisms of algebraic surfaces. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1205-1237. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/