Inseparable morphisms of algebraic surfaces
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1205-1237

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that no regular vector field exists on an algebraic $K3$ surface defined over an algebraically closed field of finite characteristic. Bibliography: 18 titles.
@article{IM2_1976_10_6_a3,
     author = {A. N. Rudakov and I. R. Shafarevich},
     title = {Inseparable morphisms of algebraic surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1205--1237},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/}
}
TY  - JOUR
AU  - A. N. Rudakov
AU  - I. R. Shafarevich
TI  - Inseparable morphisms of algebraic surfaces
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1205
EP  - 1237
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/
LA  - en
ID  - IM2_1976_10_6_a3
ER  - 
%0 Journal Article
%A A. N. Rudakov
%A I. R. Shafarevich
%T Inseparable morphisms of algebraic surfaces
%J Izvestiya. Mathematics 
%D 1976
%P 1205-1237
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/
%G en
%F IM2_1976_10_6_a3
A. N. Rudakov; I. R. Shafarevich. Inseparable morphisms of algebraic surfaces. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1205-1237. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a3/