Vector bundles of finite rank over infinite varieties
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1187-1204
Voir la notice de l'article provenant de la source Math-Net.Ru
This article contains a proof of the conjecture of Schwarzenberger that vector bundles on infinite-dimensional projective space $P_{\infty}$ split as the sum of line bundles, and a generalization to quasi-homogeneous projective varieties.
Bibliography: 7 titles.
@article{IM2_1976_10_6_a2,
author = {A. N. Tyurin},
title = {Vector bundles of finite rank over infinite varieties},
journal = {Izvestiya. Mathematics },
pages = {1187--1204},
publisher = {mathdoc},
volume = {10},
number = {6},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a2/}
}
A. N. Tyurin. Vector bundles of finite rank over infinite varieties. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1187-1204. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a2/