Lie algebras with a~subalgebra of codimension~$p$
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1165-1186.

Voir la notice de l'article provenant de la source Math-Net.Ru

All Lie algebras over an algebraically closed field $\mathbf K$, with $\operatorname{char}\mathbf K=p>3$, which have a faithful irreducible representation of degree $p$ are enumerated. Graded Lie algebras $L=\bigoplus^r_{i=-q}L_i$, which have subalgebra $L^-=\bigoplus_{i0}L_i$ with $\operatorname{dim}L^-=p$ are investigated. Simple finite-dimensional modular Lie algebras which have a maximal subalgebra $\mathscr L_0$ of codimension $p>5$ such that for the corresponding noncontractible filtration with $\mathscr L_1\ne0$ the algebra $\operatorname{Gr}\mathscr L$ is transitive are characterized as deformations of such graded algebras. Bibliography: 15 titles.
@article{IM2_1976_10_6_a1,
     author = {M. I. Kuznetsov},
     title = {Lie algebras with a~subalgebra of codimension~$p$},
     journal = {Izvestiya. Mathematics },
     pages = {1165--1186},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
TI  - Lie algebras with a~subalgebra of codimension~$p$
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1165
EP  - 1186
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/
LA  - en
ID  - IM2_1976_10_6_a1
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%T Lie algebras with a~subalgebra of codimension~$p$
%J Izvestiya. Mathematics 
%D 1976
%P 1165-1186
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/
%G en
%F IM2_1976_10_6_a1
M. I. Kuznetsov. Lie algebras with a~subalgebra of codimension~$p$. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1165-1186. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/

[1] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33 (1969), 251–322 | MR | Zbl

[2] Kostrikin A. I., “Teorema o poluprostykh $p$-algebrakh Li”, Matem. zametki, 2 (1967), 465–474 | MR | Zbl

[3] Kostrikin A. I., “Neprivodimye graduirovannye algebry Li s komponentoi $L_0\cong W_1$”, Matem. zapiski Uralskogo gos. universiteta, Sverdlovsk, 1970

[4] Strade H., “Nonclassical simple Lie algebras and strong degeneration”, Arch. Math., XXIV (1973), 482–485 | DOI | MR

[5] Strade H., “Lie algebras representations of dimension $p-1$”, Proc. Amer. Math. Soc., 41:2 (1973), 419–424 | DOI | MR | Zbl

[6] Kats V. G., “O klassifikatsii prostykh algebr Li nad polem s nenulevoi kharakteristikoi”, Izv. AN SSSR. Ser. matem., 34 (1970), 385–408 | Zbl

[7] Kostrikin A. I., “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 34 (1970), 744–756 | MR | Zbl

[8] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[9] Kaplanskii I., Algebry Li i lokalno kompaktnye gruppy, Mir, M., 1974

[10] Block R. E., “Modules over differential polynomial rings”, Bull. Amer. Math. Soc., 79 (1973), 729–733 | DOI | MR | Zbl

[11] Kostrikin A. I., “Kvadraty prisoedinennykh endomorfizmov v prostykh $p$-algebrakh Li”, Izv. AN SSSR. Ser. matem., 31 (1967), 445–487 | MR | Zbl

[12] Kaplansky J., “Lie algebras of characteristic $p$”, Trans. Amer. Math. Soc., 89 (1958), 149–183 | DOI | MR | Zbl

[13] Kostrikin A. I., “O silnoi vyrozhdennosti prostykh $p$-algebr Li”, Dokl. AN SSSR, 150:2 (1963), 248–250 | MR | Zbl

[14] Seligman G. B., Modular Lie algebras, Erg. Math., 40, Springer, 1967 | MR | Zbl

[15] Kostrikin A. I., “Nekotorye aspekty teorii algebr Li”, Izbrannye voprosy algebry i logiki, Novosibirsk, 1973 | Zbl