Lie algebras with a~subalgebra of codimension~$p$
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1165-1186

Voir la notice de l'article provenant de la source Math-Net.Ru

All Lie algebras over an algebraically closed field $\mathbf K$, with $\operatorname{char}\mathbf K=p>3$, which have a faithful irreducible representation of degree $p$ are enumerated. Graded Lie algebras $L=\bigoplus^r_{i=-q}L_i$, which have subalgebra $L^-=\bigoplus_{i0}L_i$ with $\operatorname{dim}L^-=p$ are investigated. Simple finite-dimensional modular Lie algebras which have a maximal subalgebra $\mathscr L_0$ of codimension $p>5$ such that for the corresponding noncontractible filtration with $\mathscr L_1\ne0$ the algebra $\operatorname{Gr}\mathscr L$ is transitive are characterized as deformations of such graded algebras. Bibliography: 15 titles.
@article{IM2_1976_10_6_a1,
     author = {M. I. Kuznetsov},
     title = {Lie algebras with a~subalgebra of codimension~$p$},
     journal = {Izvestiya. Mathematics },
     pages = {1165--1186},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
TI  - Lie algebras with a~subalgebra of codimension~$p$
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1165
EP  - 1186
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/
LA  - en
ID  - IM2_1976_10_6_a1
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%T Lie algebras with a~subalgebra of codimension~$p$
%J Izvestiya. Mathematics 
%D 1976
%P 1165-1186
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/
%G en
%F IM2_1976_10_6_a1
M. I. Kuznetsov. Lie algebras with a~subalgebra of codimension~$p$. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1165-1186. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a1/