On countably generated locally $\mathfrak M$-algebras
Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1145-1163.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how to construct countably generated locally nilpotent groups, rings, and algebras, locally finite groups, rings, and algebras over a finite field, and other countably generated universal algebras possessing certain properties locally. The construction possesses a property close to universality. For example, with each function $f\colon N\to N$ defined on the natural numbers $N$ and assuming values in $N$ there is associated a countably generated locally nilpotent algebra $\mathscr L(f)$. If $f$ is an unbounded increasing function, then any countably generated or finitely generated locally nilpotent algebra $R$ is a homomorphic image of $\mathscr L(f)$. On the other hand, if $f$ and $g$ are any two increasing functions, then $\mathscr L(f)$ and $\mathscr L(g)$ are isomorphic if and only if $f$ and $g$ agree. Bibliography: 3 titles.
@article{IM2_1976_10_6_a0,
     author = {Yu. M. Ryabukhin},
     title = {On countably generated locally $\mathfrak M$-algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1145--1163},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a0/}
}
TY  - JOUR
AU  - Yu. M. Ryabukhin
TI  - On countably generated locally $\mathfrak M$-algebras
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1145
EP  - 1163
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a0/
LA  - en
ID  - IM2_1976_10_6_a0
ER  - 
%0 Journal Article
%A Yu. M. Ryabukhin
%T On countably generated locally $\mathfrak M$-algebras
%J Izvestiya. Mathematics 
%D 1976
%P 1145-1163
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a0/
%G en
%F IM2_1976_10_6_a0
Yu. M. Ryabukhin. On countably generated locally $\mathfrak M$-algebras. Izvestiya. Mathematics , Tome 10 (1976) no. 6, pp. 1145-1163. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a0/

[1] Kurosh A. G., Lektsii po obschei algebre, Fizmatgiz, M., 1962 | MR

[2] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[3] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR