On countably generated locally $\mathfrak M$-algebras
Izvestiya. Mathematics, Tome 10 (1976) no. 6, pp. 1145-1163
Cet article a éte moissonné depuis la source Math-Net.Ru
We show how to construct countably generated locally nilpotent groups, rings, and algebras, locally finite groups, rings, and algebras over a finite field, and other countably generated universal algebras possessing certain properties locally. The construction possesses a property close to universality. For example, with each function $f\colon N\to N$ defined on the natural numbers $N$ and assuming values in $N$ there is associated a countably generated locally nilpotent algebra $\mathscr L(f)$. If $f$ is an unbounded increasing function, then any countably generated or finitely generated locally nilpotent algebra $R$ is a homomorphic image of $\mathscr L(f)$. On the other hand, if $f$ and $g$ are any two increasing functions, then $\mathscr L(f)$ and $\mathscr L(g)$ are isomorphic if and only if $f$ and $g$ agree. Bibliography: 3 titles.
@article{IM2_1976_10_6_a0,
author = {Yu. M. Ryabukhin},
title = {On countably generated locally $\mathfrak M$-algebras},
journal = {Izvestiya. Mathematics},
pages = {1145--1163},
year = {1976},
volume = {10},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a0/}
}
Yu. M. Ryabukhin. On countably generated locally $\mathfrak M$-algebras. Izvestiya. Mathematics, Tome 10 (1976) no. 6, pp. 1145-1163. http://geodesic.mathdoc.fr/item/IM2_1976_10_6_a0/